本文主要是介绍大数据实时依旧是一项很难的技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
背景
自google发布3篇GFS,BigTable,MapReduce已过去近20年之久,市面上针对大数据治理方案也层出不穷,但大数据实时依旧是一项很难得技术。其主要表现在如下方面:
(1)需求实现很难。对数据使用的用户持续增长,用户需求复杂多变,而这种复杂的需求实现又局限于目前的大数据生态,几乎没有某一个组件能解决几乎所有用户需求场景,依旧需要灵活的组合各大数据组件来实现。
(2)实时存储很难。随着场景需求发展,需要数据从离线向实时迈进,要求满足实时场景下逐行插入、低延时随机写、满足实时更新、是否数据具有完整性保证等。
(3)实时分析很难。实时分析场景下需要能够对数据具有快速扫描的能力、能快速过滤、减少数据IO等。
架构演变
hdfs+compaction
GFS被设计用来可以解决大数据场景下的实时快速分析,扫描批量查询性能优越,但却对数据的随机读写、更新显得力不从心。为满足一个能基于hdfs快速分析且较实时写入的系统,也许会基于如下方式实现,通过spark streaming 程序读取实时流数据,写入至hdfs上,数据分析通过spark近似的程序读取hdfs写入的文件块。
过一段后发现hdfs小文件过多,已经验证影响hdfs磁盘查询性能。于是考虑采用一个后台线程compaction方式不停对hdfs文件合并,同时还需要考虑合并文件时不能在用户查询过程中进行,否则导致用户分区暂时“丢失”,需要将合并后的文件替换成新的,因此必须保证数据一致性。这样hdfs上可能会存在一个base和landing目录存在,base用来保存已经compaction的数据,loading目录保存待合并的数据,每次都将loading目录下的数据移动的base下完成合并,然后将元数据指向新的分区,并利用试图保证用户看到一致性数据。于是修改为如下架构:
该方案尽管是实时的,但却是伪实时,因为还是小文件,只不过通过小文件合并减少了,即使可以通过文件合并等方式模拟随机写来实现,但这样做会导致成本很高。原因很简单,试图让hdfs做不善长的工作。
hbase+hdfs
hbase作为bigtable的开源实现,可以做到随机读写,却缺少数据分析性能,于是有人将其改造为下架构:
数据不断的写入hbase,等积攒至一定大小时,就flush至批层,批层将其刷成一个parquet文件,然后向hdfs上添加一个数据表分区,通知元数据层增加了新分区数据。但这样做就必须要求client端知道有2个系统,否则就不在流与批之间添加一个“连接层”。
实时流计算
还有一种架构是通过spark streaming,storm,flink等实时处理框架实现的,提供实时读取和处理功能,但这类系统在实时计算和统计时,往往需要与外部存储交互,这样外部数据存储也必须满足行插入、低延时随机读写、快速查询分析、更新等能力,如下图所示,这样导致采用大数据技术来实现变得很复杂。
因此说,大数据实时依旧是一项很难得技术。
但大数据实时真是一项很难得技术吗?
KUDU
kudu介于hdfs与hbase的产品,具有实时写入、实时分析特性,后期市场上出现的hudi也模拟kudu架构实现了自己的版本。
未完待续 ... ...
这篇关于大数据实时依旧是一项很难的技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!