即插即用型ADMM应用于图像超分

2024-01-24 21:48

本文主要是介绍即插即用型ADMM应用于图像超分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Plug-and-Play优化公式

x ^ = arg min ⁡ x f ( x ) + λ g ( x ) \hat{x}=\argmin_{x} f(x)+\lambda g(x) x^=xargminf(x)+λg(x) (1)

首先这是一个最大后验的问题,我们可以用ADMM方法转化为下面的算式:

{ x ( k + 1 ) = arg min ⁡ x f ( x ) + ρ 2 ∣ ∣ x − v ( k ) + u ( k ) ∣ ∣ 2 v ( k + 1 ) = D σ k ( x ( k + 1 ) + u ( k ) ) u ( k + 1 ) = u ( k ) + ( x ( k + 1 ) − v ( k + 1 ) ) \begin{cases} x^{(k+1)} = \argmin_{x}f(x)+\frac{\rho}{2}||x-v^{(k)}+u^{(k)}||^2\\ v^{(k+1)}=D_{\sigma_{k}}(x^{(k+1)}+u^{(k)})\\ u^{(k+1)}=u^{(k)}+(x^{(k+1)}-v^{(k+1)})\end{cases} x(k+1)=xargminf(x)+2ρxv(k)+u(k)2v(k+1)=Dσk(x(k+1)+u(k))u(k+1)=u(k)+(x(k+1)v(k+1)) (2)

在超分问题的应用

在超分辨率问题中,函数 f ( x ) f(x) f(x)拥有二次项的形式:

f ( x ) = ∣ ∣ S H x − y ∣ ∣ 2 f(x)=||SHx-y||^2 f(x)=SHxy2(3)

这里 H ∈ R n × n H\in R^{n\times n} HRn×n是一个循环矩阵,用于对抗混叠滤波器进行卷积。

循环矩阵有一个重要的性质:可以被离散傅里叶变换矩阵对角化

公式为: X = c ( x ) = F ⋅ d i a g ( F ( x ) ) ⋅ F H X=c(x)=F\cdot diag(\mathscr{F}(x))\cdot F^H X=c(x)=Fdiag(F(x))FH,其中 F ( ⋅ ) \mathscr{F}(\cdot) F()表示离散傅里叶变换, F F F表示DFT矩阵。 F F H = F H F = I FF^H=F^HF=I FFH=FHF=I,这是一个酉矩阵。之所以把它叫做DFT矩阵是因为一个信号的DFT变换可以由和这个矩阵相乘得到。 x x x表示构成循环矩阵的向量 x = [ x 0 x 1 x 2 ] x=\begin{bmatrix}x_0&x_1&x_2\end{bmatrix} x=[x0x1x2]

下面为循环矩阵的例子:

X = c ( x ) = [ x 0 x 1 x 2 x 2 x 0 x 1 x 1 x 2 x 0 ] X=c(x)=\begin{bmatrix}x_0 & x_1&x_2\\x_2&x_0&x_1\\x_1&x_2&x_0\end{bmatrix} X=c(x)=x0x2x1x1x0x2x2x1x0

而均值滤波的高斯模糊滤波器的形式是: X = 1 9 [ 1 1 1 1 1 1 1 1 1 ] X=\frac{1}{9}\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix} X=91111111111显然这是一个循环矩阵(还有一种在降采样中常用的高斯模糊核,因为它不是循环矩阵所以不能用我们这种方法)。

继续超分问题的分析

H是一个循环矩阵,S是一个降采样矩阵,我们定义 G : = S H G:=SH G:=SH。带入(2)式,我们得到下面的优化方程:
x ^ = arg min ⁡ x ∈ R n ∣ ∣ G x − y ∣ ∣ 2 + ρ 2 ∣ ∣ x − x ~ ∣ ∣ 2 \hat{x}=\argmin_{x\in R^n}||Gx-y||^2+\frac{\rho}{2}||x-\widetilde{x}||^2 x^=xRnargminGxy2+2ρxx 2.(4)
这个方程有闭式解:
x ^ = ( G T G + ρ I ) − 1 ( G T y + ρ x ~ ) \hat{x}=(G^TG+\rho I)^{-1}(G^Ty+\rho \widetilde{x}) x^=(GTG+ρI)1(GTy+ρx ).(5)
但是这个闭式解含有伪逆运算,所以运算速度比较慢。

  1. G = S H G=SH G=SH时,由于 H T S T S H H^TS^TSH HTSTSH既不是对角矩阵也不可以通过傅里叶变换对角化,所以它的解是非平凡的解。我们可以使用多变量分割的方法或者直接通过共轭梯度法对方程求解,但是多变量分割的方法需要拉格朗日乘子和内部变量,所以运算速度也很慢。
  2. S S S是标准的K倍降采样算符,H是循环卷积时我们有机会得到闭式解。下面展示如何使用傅里叶变换的方式加快运算。

通过傅里叶变换求闭式解

首先我们需要使用Woodbury Matrix Identity and Sherman-Morrison Formula(伍德伯里恒等式)来改写(5)式为:
x ^ = ρ − 1 b − ρ − 1 G T ( ρ I + G G T ) − 1 G b \hat{x}=\rho^{-1}b-\rho^{-1}G^T(\rho I+GG^T)^{-1}Gb x^=ρ1bρ1GT(ρI+GGT)1Gb,(6)
这里 b : = G T y + ρ x ~ b:=G^Ty+\rho \tilde{x} b:=GTy+ρx~.
更加关键的步骤在于下面的发现:
G G T = S H H T S T GG^T=SHH^TS^T GGT=SHHTST.
因为 S S S是一个K倍降采样算符,那么 S T S^T ST就是一个K倍升采样算符。定义 H ~ = H H T \tilde{H}=HH^T H~=HHT,这可以解释为在模糊核h和它的时间反演之间的卷积。那么 S T H ~ S S^T\tilde{H}S STH~S就是一种升采样-滤波器-降采样结构,如下图:
在这里插入图片描述
接下来使用数字信号处理中的多项分解及Z变换的技术,实现傅里叶变换形式的闭式解如下:
x = ρ − 1 b − ρ − 1 G T ( F − 1 { F ( G b ) ∣ F ( h 0 ~ ) ∣ 2 + ρ } ) x=\rho^{-1}b-\rho^{-1}G^T(\mathscr{F}^{-1} \lbrace \frac{\mathscr{F}(Gb)}{|\mathscr{F}(\tilde{h_0})|^2+\rho}\rbrace) x=ρ1bρ1GT(F1{F(h0~)2+ρF(Gb)}).(7)
其中 b = G T y + ρ x ~ b=G^Ty+\rho\tilde{x} b=GTy+ρx~

参考文献

[1]:Plug-and-Play ADMM for Image Restoration:Fixed Point Convergence and Applications

这篇关于即插即用型ADMM应用于图像超分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/641115

相关文章

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S