即插即用型ADMM应用于图像超分

2024-01-24 21:48

本文主要是介绍即插即用型ADMM应用于图像超分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Plug-and-Play优化公式

x ^ = arg min ⁡ x f ( x ) + λ g ( x ) \hat{x}=\argmin_{x} f(x)+\lambda g(x) x^=xargminf(x)+λg(x) (1)

首先这是一个最大后验的问题,我们可以用ADMM方法转化为下面的算式:

{ x ( k + 1 ) = arg min ⁡ x f ( x ) + ρ 2 ∣ ∣ x − v ( k ) + u ( k ) ∣ ∣ 2 v ( k + 1 ) = D σ k ( x ( k + 1 ) + u ( k ) ) u ( k + 1 ) = u ( k ) + ( x ( k + 1 ) − v ( k + 1 ) ) \begin{cases} x^{(k+1)} = \argmin_{x}f(x)+\frac{\rho}{2}||x-v^{(k)}+u^{(k)}||^2\\ v^{(k+1)}=D_{\sigma_{k}}(x^{(k+1)}+u^{(k)})\\ u^{(k+1)}=u^{(k)}+(x^{(k+1)}-v^{(k+1)})\end{cases} x(k+1)=xargminf(x)+2ρxv(k)+u(k)2v(k+1)=Dσk(x(k+1)+u(k))u(k+1)=u(k)+(x(k+1)v(k+1)) (2)

在超分问题的应用

在超分辨率问题中,函数 f ( x ) f(x) f(x)拥有二次项的形式:

f ( x ) = ∣ ∣ S H x − y ∣ ∣ 2 f(x)=||SHx-y||^2 f(x)=SHxy2(3)

这里 H ∈ R n × n H\in R^{n\times n} HRn×n是一个循环矩阵,用于对抗混叠滤波器进行卷积。

循环矩阵有一个重要的性质:可以被离散傅里叶变换矩阵对角化

公式为: X = c ( x ) = F ⋅ d i a g ( F ( x ) ) ⋅ F H X=c(x)=F\cdot diag(\mathscr{F}(x))\cdot F^H X=c(x)=Fdiag(F(x))FH,其中 F ( ⋅ ) \mathscr{F}(\cdot) F()表示离散傅里叶变换, F F F表示DFT矩阵。 F F H = F H F = I FF^H=F^HF=I FFH=FHF=I,这是一个酉矩阵。之所以把它叫做DFT矩阵是因为一个信号的DFT变换可以由和这个矩阵相乘得到。 x x x表示构成循环矩阵的向量 x = [ x 0 x 1 x 2 ] x=\begin{bmatrix}x_0&x_1&x_2\end{bmatrix} x=[x0x1x2]

下面为循环矩阵的例子:

X = c ( x ) = [ x 0 x 1 x 2 x 2 x 0 x 1 x 1 x 2 x 0 ] X=c(x)=\begin{bmatrix}x_0 & x_1&x_2\\x_2&x_0&x_1\\x_1&x_2&x_0\end{bmatrix} X=c(x)=x0x2x1x1x0x2x2x1x0

而均值滤波的高斯模糊滤波器的形式是: X = 1 9 [ 1 1 1 1 1 1 1 1 1 ] X=\frac{1}{9}\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix} X=91111111111显然这是一个循环矩阵(还有一种在降采样中常用的高斯模糊核,因为它不是循环矩阵所以不能用我们这种方法)。

继续超分问题的分析

H是一个循环矩阵,S是一个降采样矩阵,我们定义 G : = S H G:=SH G:=SH。带入(2)式,我们得到下面的优化方程:
x ^ = arg min ⁡ x ∈ R n ∣ ∣ G x − y ∣ ∣ 2 + ρ 2 ∣ ∣ x − x ~ ∣ ∣ 2 \hat{x}=\argmin_{x\in R^n}||Gx-y||^2+\frac{\rho}{2}||x-\widetilde{x}||^2 x^=xRnargminGxy2+2ρxx 2.(4)
这个方程有闭式解:
x ^ = ( G T G + ρ I ) − 1 ( G T y + ρ x ~ ) \hat{x}=(G^TG+\rho I)^{-1}(G^Ty+\rho \widetilde{x}) x^=(GTG+ρI)1(GTy+ρx ).(5)
但是这个闭式解含有伪逆运算,所以运算速度比较慢。

  1. G = S H G=SH G=SH时,由于 H T S T S H H^TS^TSH HTSTSH既不是对角矩阵也不可以通过傅里叶变换对角化,所以它的解是非平凡的解。我们可以使用多变量分割的方法或者直接通过共轭梯度法对方程求解,但是多变量分割的方法需要拉格朗日乘子和内部变量,所以运算速度也很慢。
  2. S S S是标准的K倍降采样算符,H是循环卷积时我们有机会得到闭式解。下面展示如何使用傅里叶变换的方式加快运算。

通过傅里叶变换求闭式解

首先我们需要使用Woodbury Matrix Identity and Sherman-Morrison Formula(伍德伯里恒等式)来改写(5)式为:
x ^ = ρ − 1 b − ρ − 1 G T ( ρ I + G G T ) − 1 G b \hat{x}=\rho^{-1}b-\rho^{-1}G^T(\rho I+GG^T)^{-1}Gb x^=ρ1bρ1GT(ρI+GGT)1Gb,(6)
这里 b : = G T y + ρ x ~ b:=G^Ty+\rho \tilde{x} b:=GTy+ρx~.
更加关键的步骤在于下面的发现:
G G T = S H H T S T GG^T=SHH^TS^T GGT=SHHTST.
因为 S S S是一个K倍降采样算符,那么 S T S^T ST就是一个K倍升采样算符。定义 H ~ = H H T \tilde{H}=HH^T H~=HHT,这可以解释为在模糊核h和它的时间反演之间的卷积。那么 S T H ~ S S^T\tilde{H}S STH~S就是一种升采样-滤波器-降采样结构,如下图:
在这里插入图片描述
接下来使用数字信号处理中的多项分解及Z变换的技术,实现傅里叶变换形式的闭式解如下:
x = ρ − 1 b − ρ − 1 G T ( F − 1 { F ( G b ) ∣ F ( h 0 ~ ) ∣ 2 + ρ } ) x=\rho^{-1}b-\rho^{-1}G^T(\mathscr{F}^{-1} \lbrace \frac{\mathscr{F}(Gb)}{|\mathscr{F}(\tilde{h_0})|^2+\rho}\rbrace) x=ρ1bρ1GT(F1{F(h0~)2+ρF(Gb)}).(7)
其中 b = G T y + ρ x ~ b=G^Ty+\rho\tilde{x} b=GTy+ρx~

参考文献

[1]:Plug-and-Play ADMM for Image Restoration:Fixed Point Convergence and Applications

这篇关于即插即用型ADMM应用于图像超分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/641115

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.