SIFT图像特征表述

2024-01-24 14:28
文章标签 图像 特征 sift 表述

本文主要是介绍SIFT图像特征表述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SIFT(尺度不变特征变换)是一种用于图像处理和计算机视觉领域的特征提取算法。其目的是检测和描述图像中的局部特征。SIFT特征对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也具有一定的稳健性。下面是SIFT特征提取的基本原理和步骤:

原理

  1. 尺度空间极值检测:SIFT算法通过在不同的尺度空间寻找关键点来保证尺度不变性。尺度空间通常使用高斯模糊来实现。
  2. 关键点定位:在尺度空间检测到的候选关键点位置,需要通过一系列的步骤来确定关键点的位置和尺度。这个过程包括去除低对比度的点和边缘响应点以提高稳健性。
  3. 方向赋值:为了使特征具有旋转不变性,算法会根据局部图像梯度的方向分配一个或多个方向给每个关键点。
  4. 关键点描述符生成:在每个关键点的邻域内,计算其尺度空间的梯度方向直方图,利用这些直方图来生成每个关键点的特征描述符。

步骤

  1. 构建尺度空间:这是SIFT算法中最关键的步骤,需要生成一系列不同尺度的图像,通常是通过对原始图像进行重复模糊和降采样来实现。
  2. 关键点检测:在尺度空间中检测局部极值点,这些点就是候选的关键点。
  3. 关键点精确定位:对候选关键点进行精确的位置和尺度定位,同时去除对比度较低的点和边缘点。
  4. 关键点方向赋值:为每个关键点分配一个或多个方向,以实现对图像旋转的不变性。
  5. 生成关键点描述符:在每个关键点周围的区域内,统计梯度和方向信息,生成用于匹配的特征向量。

SIFT特征提取算法因其稳健性和不变性特点,在图像匹配、物体识别、3D重建等领域有着广泛的应用。

这篇关于SIFT图像特征表述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/639976

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通

【python计算机视觉编程——7.图像搜索】

python计算机视觉编程——7.图像搜索 7.图像搜索7.1 基于内容的图像检索(CBIR)从文本挖掘中获取灵感——矢量空间模型(BOW表示模型)7.2 视觉单词**思想****特征提取**: 创建词汇7.3 图像索引7.3.1 建立数据库7.3.2 添加图像 7.4 在数据库中搜索图像7.4.1 利用索引获取获选图像7.4.2 用一幅图像进行查询7.4.3 确定对比基准并绘制结果 7.

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

HalconDotNet中的图像特征与提取详解

文章目录 简介一、边缘特征提取二、角点特征提取三、区域特征提取四、纹理特征提取五、形状特征提取 简介   图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。 一、边缘特征提取   边缘特征提取是图像处理中最基本的特征提取方法之一,通过检

超越IP-Adapter!阿里提出UniPortrait,可通过文本定制生成高保真的单人或多人图像。

阿里提出UniPortrait,能根据用户提供的文本描述,快速生成既忠实于原图又能灵活调整的个性化人像,用户甚至可以通过简单的句子来描述多个不同的人物,而不需要一一指定每个人的位置。这种设计大大简化了用户的操作,提升了个性化生成的效率和效果。 UniPortrait以统一的方式定制单 ID 和多 ID 图像,提供高保真身份保存、广泛的面部可编辑性、自由格式的文本描述,并且无需预先确定的布局。

Winfrom中解决图像、文字模糊的方法

1.添加清单 2.将清单中的下面内容取消注释

使用亚马逊Bedrock的Stable Diffusion XL模型实现文本到图像生成:探索AI的无限创意

引言 什么是Amazon Bedrock? Amazon Bedrock是亚马逊云服务(AWS)推出的一项旗舰服务,旨在推动生成式人工智能(AI)在各行业的广泛应用。它的核心功能是提供由顶尖AI公司(如AI21 Labs、Anthropic、Cohere、Meta、Mistral AI、Stability AI以及亚马逊自身)开发的多种基础模型(Foundation Models,简称FMs)。