本文主要是介绍算法训练营第五十六天|583. 两个字符串的删除操作 72. 编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
- Leetcode583. 两个字符串的删除操作
- Leetcode72. 编辑距离
Leetcode583. 两个字符串的删除操作
文章链接:代码随想录
题目链接:583. 两个字符串的删除操作
思路:直接记录需要改(增或删)几个,也就是求不公共的子序列
class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++){for (int j = 1; j <= word2.size(); j++){if (word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1];else dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i][j - 1] + 1, dp[i - 1][j] + 1));}}return dp[word1.size()][word2.size()];}
};
也可以记录最长公共子序列,再减
class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 1; i <= word1.size(); i++){for (int j = 1; j <= word2.size(); j++){if (word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);}}return word1.size() + word2.size() - dp[word1.size()][word2.size()] * 2;}
};
Leetcode72. 编辑距离
文章链接:代码随想录
题目链接:72. 编辑距离
思路:和上一题相比,差别在于多了替换,因此dp[i - 1][j - 1] 只需要多加一步即可变为dp[i][j]。
class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 1; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++){for (int j = 1; j <= word2.size(); j++){if (word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1];else dp[i][j] = min(dp[i - 1][j - 1] + 1, min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));}}return dp[word1.size()][word2.size()];}
};
第五十六天打卡,今天给周老师写了个冰层项目进展,耽误了一些学习进度,加油!!!
这篇关于算法训练营第五十六天|583. 两个字符串的删除操作 72. 编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!