多模态融合最新创新方法汇总(附ICLR2024必看的22篇文章和源码)

本文主要是介绍多模态融合最新创新方法汇总(附ICLR2024必看的22篇文章和源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天盘点了 ICLR 2024 顶会中有关多模态融合领域的最新研究成果,共22篇,方便同学们更高效地了解最新的融合方法、快速获得论文创新点的启发。

论文主要涉及大模型+多模态融合、自动选择和构建模态、视觉Transformer的3D对象检测、动态多模态融合的深度平衡、基于Transformer的系统融合方法等热门主题。

论文和代码需要的同学看文末

1.Progressive Fusion for Multimodal Integration

多模态融合的渐进式融合

简述:多模态信息融合可以提升机器学习模型的性能。通常,模型会分别处理不同模态的数据,然后再将这些信息合并。但这种方法可能会丢失一些信息。另一方面,早期就将不同模态的信息合并的方法又会有特征不一致和样本复杂度高的问题。本文提出了一种叫做“渐进融合”的方法,通过在模型的不同层次之间建立联系,使得深层融合的信息能够被浅层使用,这样既避免了信息丢失,又保持了后融合的优点。作者在多个任务上测试了这个方法,并证明了它的有效性和通用性。

2.Orthogonal Sequential Fusion in Multimodal Learning

多模态学习中的正交序列融合

简述:多模态学习中,将不同来源的数据整合起来是一大挑战。传统方法通常是一次性融合所有数据,这可能会导致不同数据类型的表示不均匀。本文提出了一种新的融合方法,叫做正交顺序融合(OSF),它按顺序一步步合并数据,并且可以对不同类型的数据进行选择性加权。这种方法还可以增强正交性,也就是提取每种数据类型的独特信息。作者们通过不同的应用展示了这种方法的有效性,并证明了它在准确性上优于其他融合技术。

3.Balanced Multimodal Learning: An Integrated Framework for Multi-Task Learning in Audio-Visual Fusion

视听融合中多任务学习的集成框架

简述:多模态学习通过结合不同感官信息来提升诸如情感分析等任务的效果。但现有研究指出,不同数据类型间存在贡献不均和学习速率不一致的问题。忽视这些问题会影响整体性能。本文提出了一个名为BalanceMLA的多模态学习框架,旨在动态平衡和优化每种模态的贡献。该框架能独立调整每种模态的目标并控制其学习过程。作者还设计了特征融合和决策融合策略来处理不平衡问题,并引入了针对具体任务的类级加权方案。实验结果表明,该模型在处理模态不平衡方面表现出色,即使在噪声环境下也能保持高效的融合效果和鲁棒性。

4.Quantifying Interactions in Semi-supervised Multimodal Learning: Guarantees and Applications

量化半监督多模态学习中的交互

简述:在多模态学习中,理解不同数据类型如何相互作用是一个关键问题。本文研究了在只有部分标记数据的情况下如何量化这种交互作用。作者们提出了一种基于信息论的方法来界定多模态交互的上下界,并展示了这些界限如何准确反映真实的交互程度。最后,他们说明了这些理论结果如何帮助评估模型性能、指导数据收集和选择合适的多模态模型。

5.HyperRep: Hypergraph-Based Self-Supervised Multimodal Representation Learning

基于Hypergraph的自监督多模态表示学习

简述:本文提出了一种叫做HyperRep的新方法,用于自监督多模态学习。这种方法利用超图来捕捉不同数据类型之间复杂的高阶关系,并结合信息瓶颈原则来提高多模态数据的融合效果。实验结果表明,与其他先进方法相比,HyperRep在多个数据集和任务上都能取得很好的效果。

6.Is the Glass Half-Empty or Half-Full? A Mixture-Of-Tasks Perspective on Missing Modality

从多任务混合视角看待缺失模态

简述:多模态学习中常见的问题是某些模态数据可能缺失。传统上,这被视为鲁棒性问题,目的是防止因模态丢失导致性能下降。但在实际的科学和工业应用中,单模态输入比多模态输入更常见。本文提出了一个新方法——缺失模态性能测试平台(MMPT),它重新考虑了在缺失模态影响下如何提升模型性能的问题,并将缺失模态与模态竞争联系起来。作者们在多个数据集上验证了这种方法,并展示了如何在缺失模态的情况下达到新的最优性能水平。

7.One-Versus-Others Attention: Scalable Multimodal Integration

可扩展的多模态融合

简述:多模态学习模型很重要,因为它们在很多任务上的表现超过了只使用一种模态的模型。但是,现有的多模态学习方法大多专注于处理最多四种模态(图像、文本、音频、视频),并且当模态数量增加时,它们的计算复杂度会急剧上升。本文提出了一种新的注意力机制——一对多(OvO)注意力,它能够随着模态数量的增加而线性扩展,从而显著降低了计算复杂度。通过实验证明,这种方法在提高性能的同时减少了计算成本。

8.EQA-MX: Embodied Question Answering using Multimodal Expression

使用多模态表达的嵌入式问答

简述:人们在交流时会用语言和手势,比如指东西时。但是之前的问答系统只能处理文字问题。本文介绍了8个新任务和一个大数据集EQA-MX,用来训练模型理解包含手势和语言的问题。作者还提出了一个新模型VQ-Fusion,它可以更好地结合视觉和语言信息。实验结果表明这个模型能显著提高问答系统的性能。

9.A Theory of Unimodal Bias in Multimodal Learning

多模态学习中单模态偏差理论

简述:同时训练多模态神经网络是一项具有挑战性的任务,因为网络可能会过度依赖一个模态而忽略其他模态,这种现象被称为单模态偏差。为了解决这个问题,作者开发了一种理论,该理论可以计算出学习过程中单模态阶段的持续时间。作者发现,融合模态的层越深,单模态阶段的时间就越长。此外,该理论还揭示了首先学习的模态不一定是对输出贡献最大的模态。

10.Multimodal Representation Learning by Alternating Unimodal Adaptation

通过交替单模态适应进行多模态表示学习

简述:多模态学习对人工智能很重要,但有时某些模态会比其他模态更有影响力,这会影响结果。本文提出了一种新的方法MLA,通过交替学习单一模态来减少不同模态之间的干扰,并通过共享部分来捕捉不同模态间的互动。这种方法在测试时还能很好地结合多种模态的信息。实验表明,MLA比之前的方法效果更好。

  1. Deep Equilibrium Multimodal Fusion

  2. Fusion is Not Enough: Single Modal Attack on Fusion Models for 3D Object Detection

  3. Transformer Fusion with Optimal Transport

  4. Parameter-Efficient Multi-Task Model Fusion with Partial Linearizeation

  5. Jointly Training Large Autoregressive Multimodal Models

  6. Robust Multimodal Learning with Missing Modalities via Parameter-Efficient Adaptation

  7. FusionViT: Hierarchical 3D Object Detection via Lidar-Camera Vision Transformer Fusion

  8. Multimodal Patient Representation Learning with Missing Modalities and Labels

  9. CLIP the Bias: How Useful is Balancing Data in Multimodal Learning?

  10. Optimal and Generalizable Multimodal Representation Learning Framework through Adaptive Graph Construction

  11. Simultaneous Dimensionality Reduction: A Data Efficient Approach for Multimodal Representation Learning

  12. IMProv: Inpainting-based Multimodal Prompting for Computer Vision Tasks

关注下方《学姐带你玩AI》🚀🚀🚀

回复“ICLR多模态”获取全部论文

码字不易,欢迎大家点赞评论收藏

这篇关于多模态融合最新创新方法汇总(附ICLR2024必看的22篇文章和源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/638314

相关文章

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get