Greenplum性能优化analyze

2024-01-24 00:38

本文主要是介绍Greenplum性能优化analyze,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  为什么需要ANALYZE

  首先介绍下RBO和CBO,这是数据库引擎在执行SQL语句时的2种不同的优化策略。

  RBO(Rule-Based Optimizer)

  基于规则的优化器,就是优化器在优化查询计划的时候,是根据预先设置好的规则进行的,这些规则无法灵活改变。举个例子,索引优先于扫描,这是一个规则,优化器在遇到所有可以利用索引的地方,都不会选择扫描。这在多数情况下是正确的,但也不完全如此:

  比如一张个人信息表中性别栏目加上索引,由于性别是只有2个值的枚举类,也就是常说的基数非常低的列,在这种列上使用索引往往效果还不如扫描。

  因此RBO的优化方式是死板的,粗放的,目前已逐渐被CBO方式取代。

  CBO(Cost Based Optimizer)

  基于代价的优化器,就是优化器在优化查询计划的时候,是根据动态计算出来的Cost(代价)来判断如何进行选择。那如何计算代价呢?这里一般是基于代价模型和统计信息,代价模型是否合理,统计信息是否准确都会影响优化的效果。

  还是拿上面员工性别统计为例,在CBO的优化方式下,物理计划就不会选择走索引。当然上面的例子比较简单,在Greenplum运行的复杂SQL中,优化器最核心的还是在scan和join的各种实现方式中做出选择,这才是能大幅提升性能的关键点。

  前面提到CBO需要一个代价模型和统计信息,代价模型和规则一样,需要预先设置好,那统计信息是如何收集的?多数基于CBO优化的计算引擎,包括Greenplum,Oracle,Hive,Spark等都类似,除了可以按一定规则自动收集统计信息外,还都支持手动输入命令进行收集,通常这个命令都叫ANALYZE。

  结论:由于CBO优化的需求,因此我们需要使用ANALYZE命令去收集统计信息。

  ANALYZE怎么使用

  说明

  ANALYZE是Greenplum提供的收集统计信息的命令。

  ANALYZE支持三种粒度,列,表,库,如下:

-- 创建表
CREATE TABLE open.t_ttt(f_id bigint,f_name character varying(128)
) WITH (appendonly=true) DISTRIBUTED BY (f_id);
-- 只搜集f_name列的统计信息
ANALYZE open.t_ttt(f_name);
-- 搜集open.t_ttt表的统计信息
ANALYZE open.t_ttt;
-- 搜集当前库所有表的统计信息,需要有权限才行
ANALYZE;

  限制

  ANALYZE会给目标表加SHARE UPDATE EXCLUSIVE锁,也就是与UPDATE,DELETE,还有DDL语句冲突。

  速度

  ANALYZE是一种采样统计算法,通常不会扫描表中所有的数据,但是对于大表,也仍会消耗一定的时间和计算资源。

  采样统计会有精度的问题,因此Greenplum也提供了一个参数default_statistics_target,调整采样的比例。简单说来,这个值设置得越大,采样的数量就越多,准确性就越高,但是消耗的时间和资源也越多。

default_statistics_target

  直接修改服务器的参数会影响整个集群,通常不建议这样操作。如果确实有需要,可以尝试只修改某列的对应参数,如下:

  ALTER TABLE {table_name} ALTER COLUMN {col_name} SET STATISTICS {-1|0-1000};

  时机

  根据上文所述,ANALYZE会加锁并且也会消耗系统资源,因此运行命令需要选择合适的时机尽可能少的运行。根据Greenplum官网建议,以下3种情况发生后建议运行ANALYZE

  批量加载数据后,比如COPY

  创建索引之后

  INSERT,UPDATE,DELETE大量数据之后

  自动化

  除了手动运行,ANALYZE也可以自动化。实际上默认情况下,我们对空表写入数据后,Greenplum也会自动帮我们收集统计信息,不过之后在写入数据,就需要手动操作了。

  有2个参数可以用来调整自动化收集的时机,gp_autostats_mode和gp_autostats_on_change_threshold。gp_autostats_mode默认是on_no_stats,也就是如果表还没有统计信息,这时候写入数据会导致自动收集,这之后,无论表数据变化多大,都只能手动收集了。如果将gp_autostats_mode修改为on_change,就是在数据变化量达到gp_autostats_on_change_threshold参数配置的量之后,系统就会自动收集统计信息。

  分区表

  Greenplum官网对于分区表的ANALYZE专门进行了讲解,其实只要保持默认值,不去修改系统参数optimizer_analyze_root_partition,那么对于分区表的操作并没有什么不同,直接在root表上进行ANALYZE即可,系统会自动把所有叶子节点的分区表的统计信息都收集起来。

  如果分区表的数目很多,那在root表上进行ANALYZE可能会非常耗时,通常的分区表都是带有时间维度的,历史的分区表并不会修改,因此单独ANALYZE数据发生变化的分区,是更好的实践。

  命令:analyze[talbe[(column,..)]]

  收集表内容的统计信息,以优化执行计划。如创建索引后,执行此命令,对于随即查询将会利用索引。

  自动统计信息收集

  在postgresql.conf中有控制自动收集的参数gp_autostats_mode设置,gp_autostats_mode三个值:none、no_change、on_no_stats(默认)

  none:禁止收集统计信息

  on change:当一条DML执行后影响的行数超过gp_autostats_on_change_threshold参数指定的值时,会执行完这条DML后再自动执行一个analyze的操作来收集表的统计信息。

  no_no_stats:当使用create talbe as select、insert、copy时,如果在目标表中没有收集过统计信息,那么会自动执行analyze来收集这张表的信息。gp默认使用on_no_stats,对数据库的消耗比较小,但是对于不断变更的表,数据库在第一次收集统计信息之后就不会再收集了。需要人为定时执行analyze。

  如果有大量的运行时间在1分钟以下的SQL,你会发现大量的时间消耗在收集统计信息上。为了降低这一部分的消耗,可以指定对某些列不收集统计信息,如下所示:1.create table test(id int,name text,note text);上面是已知道表列note不需出现在join列上,也不会出现在where语句的过滤条件下,因为可以把这个列设置为不收集统计信息:1.alter table test alter note SET STATISTICS 0;

这篇关于Greenplum性能优化analyze的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/638032

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

Java慢查询排查与性能调优完整实战指南

《Java慢查询排查与性能调优完整实战指南》Java调优是一个广泛的话题,它涵盖了代码优化、内存管理、并发处理等多个方面,:本文主要介绍Java慢查询排查与性能调优的相关资料,文中通过代码介绍的非... 目录1. 事故全景:从告警到定位1.1 事故时间线1.2 关键指标异常1.3 排查工具链2. 深度剖析:

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决