深度学习技术栈 —— Pytorch之TensorDataset、DataLoader

2024-01-23 18:20

本文主要是介绍深度学习技术栈 —— Pytorch之TensorDataset、DataLoader,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习技术栈 —— Pytorch之TensorDataset、DataLoader

  • 前言
  • 一、TensorDataset、DataLoader的用法?
  • 二、从.csv文件-->tensor张量
  • 总结


前言

简单来说,TensorDatasetDataLoader这两个类的作用, 就是将数据读入并做整合,以便交给模型处理。就像石油加工厂一样,你不关心石油是如何采集与加工的,你关心的是自己去哪加油,油价是多少,对于一个模型而言,DataLoader就是这样的一个予取予求的数据服务商。

参考文章或视频链接
[1] How to use TensorDataset, Dataloader (pytorch)

一、TensorDataset、DataLoader的用法?

# coding:utf-8
# @Time: 2024/1/23 上午9:57
# @Author: 键盘国治理专家
# @File: __init__.py.py
# @Description: import numpy as np
import torch
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoaderdef test_TensorDataset():input = np.random.rand(4, 2)  # Input datacorrect = np.random.rand(4, 1)  # Correct answer datainput = torch.FloatTensor(input)  # Change to an array that can be handled by pytorchcorrect = torch.FloatTensor(correct)  # Same as aboveprint(input)print(correct)dataset = TensorDataset(input, correct)  # set the data,注意,是TensorDataset而不是Dataset,Dataset是个abstract class不能实例化print(dataset)  # 打印地址print(vars(dataset))  # vars prints the contents of the objectreturn datasetdef test_DataLoader(dataset):train_load = DataLoader(dataset, batch_size=3, shuffle=False)  # Data shuffle with shuffle=Truefor x, t in train_load:print('x-->', x)print('t-->', t)if __name__ == '__main__':dataset = test_TensorDataset()print("========================================================================================")test_DataLoader(dataset)

二、从.csv文件–>tensor张量

一般说来,大部分Kaggle比赛的数据都是以.csv为格式的,而Pytorch处理的是tensor张量,所以我们要了解如何将.csv文件的数据变成tensor张量数据。

"""
步骤如下
(1) xx.csv --> 经由pandas 变成 numpy 数组
(2) numpy 变成 tensor 张量
(3) tensor张量经过TensorDataset的组合
(4) dataset再经过DataLoader的处理,进而保证数据可用,以上为清洗过程
.csv --> numpy --> tensor --> dataset --> dataloader 四个过程,五个数据中转形式。
"""
# coding:utf-8
# @Time: 2024/1/23 下午1:01
# @Author: 键盘国治理专家
# @File: csv2tensor.py
# @Description:import numpy
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoaderdef csv2numpy(csv_path):data = pd.read_csv(csv_path, dtype=np.float64)# numpy_data = data.iloc[:, data.columns != "xx"]  # 另一种用法,data.columns != "xx" 可以过滤掉你不想读入的字段numpy_data = data.iloc[:].valuesreturn numpy_datadef numpy2tensor(numpy_data):tensor_data = torch.from_numpy(numpy_data)return tensor_datadef tensor2DataLoader(tensor_data):  # 一步到位,直接变成DataLoader。最简单的实现方式,这个func还有改进空间,DataSet可以接收多个tensor数据dataset = torch.utils.data.TensorDataset(tensor_data)data_loader = torch.utils.data.DataLoader(dataset, shuffle=False)return data_loader# 你甚至可以直接将.csv处理成DataLoader了,把这几个过程简单组合下形成一个新函数
def csv2DataLoader(csv_path):numpy_data = csv2numpy(csv_path)tensor_data = numpy2tensor(numpy_data)data_loader = tensor2DataLoader(tensor_data)return data_loaderif __name__ == '__main__':numpy_data = csv2numpy("./test.csv")# print(type(numpy_data))# print(numpy_data.shape)# print(numpy_data)tensor_data = numpy2tensor(numpy_data)# print(type(tensor_data))# print(tensor_data.shape)# print(tensor_data)data_loader = tensor2DataLoader(tensor_data)# print(type(data_loader))# print(data_loader)# print(data_loader.dataset)# # 用遍历的方式才能输出data_loader里的数据# for data_item in data_loader:#     print('data_item-->', data_item)# # 把数据的索引也一起输出# for i, data_item in enumerate(data_loader):#     print('i', i)#     print('data_item-->', data_item)

总结

本篇工作虽然简单,但确是进阶的一个不大不小的绊脚石,功夫虽小,也不能不练。

这篇关于深度学习技术栈 —— Pytorch之TensorDataset、DataLoader的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637131

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;