【20210924】【机器/深度学习】基于亚洲球队数据,讲解K-Means算法原理和 Python 函数库使用方法

本文主要是介绍【20210924】【机器/深度学习】基于亚洲球队数据,讲解K-Means算法原理和 Python 函数库使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 一、问题

        下面整理了 2015-2019 年亚洲球队的排名,如下表所示。其中 2019 年国际排名和 2015 年亚洲杯排名均为实际排名。2018 年世界杯中,很多球队没有进入到决赛圈,只有进入到决赛圈的球队才有实际的排名。如果是亚洲区预选赛 12 强的球队,排名会设置为40;如果没有进入到亚洲区预选赛 12 强,球队排名会设置成 50。

        数据集:cystanford kmeans实战图片及代码 31804b9

        (参考:白话机器学习算法理论+实战之KMearns聚类算法)

        基于亚洲球队数据集,按照成绩划分成 3 个等级,此时可以使用聚类算法实现,这里介绍 K-Means 算法的原理和使用方法。

二、算法原理

        K-Means 是一种非监督学习,解决的是聚类问题。K 代表的是 K 类,Means 代表的是类中心。K-Means 算法的目标是:使类内差异最小化,使类间差异最大化。

        【算法步骤】

                第一步:首先选取 K 个类中心点,一般是随机抽取的;

                第二步:计算其余样本点距 K 个中心点的距离(常用欧氏距离),将每个点分配到最近的类中心点,这样就初步形成了 K 个类;

                第三步:重新计算每个类的中心点(常用取平均值);

                重复第二步和第三步,直到迭代结束。

                迭代结束的条件通常有两个:(1)达到最大迭代次数;(2)类不再发生变化。

三、代码实现

'''功能:基于亚洲球队数据,使用 K-Means 算法做聚类
'''import numpy as np
import pandas as pd
import scipy.io as scio
from sklearn.cluster import KMeans
from sklearn import preprocessing# 导入数据
data = pd.read_csv('data.csv', encoding='gbk')
myData = data[['2019年国际排名', '2018世界杯', '2015亚洲杯']]# 对数据进行 min-max normalization 归一化
min_max_scaler = preprocessing.MinMaxScaler()
myData = min_max_scaler.fit_transform(myData)# 训练模型并预测
kmeans = KMeans(n_clusters=3)
kmeans.fit(myData)
labels_pre = kmeans.predict(myData)# 合并聚类结果,插入到原数据中
result = pd.concat((data, pd.DataFrame(labels_pre)), axis=1)
result.rename({0:u'聚类'}, axis=1, inplace=True)
print(result)

运行结果: 

 四、K-Means 算法的优缺点

        1. 优点:

                (1)原理简单,容易实现,收敛速度快;

                (2)聚类效果较优;

                (3)算法的可解释性强

                (4)参数少,只有一个簇数 k 需要调。

        2. 缺点:

                (1)K 值选择不容易;

                (2)对于非凸数据集较难收敛;

                (3)如果各隐含类别的数据不平衡,则聚类效果不佳;

                (4)最终结果和初始点的选择有关,容易陷入局部最优

                (5)对噪声和异常点比较敏感。

        (参考:K-means原理、优化及应用)

五、Python 函数库参数详解

KMeans(n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distance='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm='auto')# n_cluster:即 k 值;
# max_iter:设置最大的迭代次数,如果聚类很难收敛,设置最大迭代次数可以及时得到反馈结果,否则程序运行时间会很长;
# n_init:初始化中心点的运算次数,程序会运行 n_init 次,取其中最好的作为初始的中心点;
# init:初始值选择方式;
# algorithm:k-means的实现算法,有 auto, full(传统的k-means), elkan 三种。

        (参考:白话机器学习算法理论+实战之KMearns聚类算法)

        (参考:sklearn kmeans 聚类中心_数据分析|k-means聚类原理) 

六、K-Means 算法和 KNN 算法的联系和区别 

1. 联系

        两者都包含给定一个点,在数据集中找离它最近的点这一步骤,也都用到了 NN(Nears Neighbor) 算法。

2. 区别

        (1)K-Means 是聚类算法,而 KNN 是分类算法;

        (2)K-Means 是无监督学习(数据集不带标签),而 KNN 是分类算法(数据集带标签);

        (3)K-Means 有前期的训练过程,而 KNN 没有明显的前期训练过程,属于 memory-based learning;

        (4)K-Means 算法的参数 K 是类别个数(物以类聚,人以群分),而 KNN 的参数 K 是邻居个数(近朱者赤,近墨者黑)。

        (参考:K-means原理、优化及应用)

        (参考:sklearn kmeans 聚类中心_数据分析|k-means聚类原理)

        (参考:KNN与K-Means的区别)

七、知识点

1. pd.concat() 的使用

        Pandas 数据的拼接可以使用:pd.concat()。

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)# objs:需要连接的对象,例如:[df1, df2]
# axis:axis=0 表示纵向拼长,axis=1 表示横向拼长;
# join:'outer' 表示 index 全部需要,'inner' 表示只取 index 重合的部分;
# join_axes:传入需要保留的 index;
# ignore_index:忽略需要连接的 frame 本身的 index;
# keys:可以给每个需要连接的 df 一个 label。

        (参考:pd.concat() Pandas 数据的拼接) 

2. 使用 df.rename() 修改 dataframe 的列名

DataFrame.rename(mapper=None, index=None, columns=None, axis=None, copy=True, inplace=False, level=None)# mapper:映射器(字典值),键表示旧名称,值表示新名称;
# index:索引(字典值),键表示旧名称,值表示新名称;
# columns:列(字典值),键表示旧名称,值表示新名称;
# axis:int 或字符串值,'0'表示行,'1'表示列;
# copy:如果为 True,表示复制基础数据;
# inplace:如果为 True,则在原始 DataFrame 中进行更改;# 返回类型:具有新名称的 DataFrame

         (参考:Python Pandas Dataframe.rename()用法及代码示例)

        (参考:Pandas中DateFrame修改列名 rename的使用方法)

3. pd.read_csv() 时编码问题

        当使用 pd.read_csv() 读取 csv 文件时,常常会因为文件中存在中文字符而产生字符编码错误。此时,可以尝试设置 encoding 参数为 'gbk' 或 'utf-8' 或 'utf-8-sig' 。

        (参考:pandas中pd.read_csv()方法中的encoding参数)

        (参考:pd.read_csv()中encoding='utf-8'和'utf-8-sig'的区别)

这篇关于【20210924】【机器/深度学习】基于亚洲球队数据,讲解K-Means算法原理和 Python 函数库使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/635450

相关文章

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos