云计算时代:当大数据遇到敏捷

2024-01-23 05:58

本文主要是介绍云计算时代:当大数据遇到敏捷,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


http://cloud.csdn.net/a/20111010/305493.html

今年九月在纽约的O’Reilly媒体会议上大数据技术有两大呼声:企业级和敏捷。我们知道企业级的商务智能产品有Oracle Hyperion、SAP BusinessObjects和IBM Cogonos,而敏捷产品有QlikView、Tableau和TIBCO Spotfire。

如果事实证明大数据必须购买企业级的产品,那么就意味着大数据会花大本钱。但这并非绝对,通过使用大数据敏捷技术,各种规模的企业都可以控制成本,从大数据中获益。至关重要的是尽可能降低成本并最大化的了解大数据集,一旦数据被转化为可用便具有对业务的洞察力,然后以各种方式将问题汇总,并发挥企业技术的优势解决问题。

企业级 VS 敏捷BI

首先让我们来看看BI世界里发生了什么。企业级BI设计的意图是为了满足大型企业中许多信息孤岛的要求。典型场景如下:信息孤岛中的数据通过ETL的过程被清洗和规范化,进入到数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。企业级BI是一个复杂的过程,它通过多种应用程序的协同工作,以满足企业中成千上万人的需求。企业级BI的问题是它的配置需要花费很长时间,所有大型的复杂系统都十分难以配置和改动。

敏捷BI可以解决企业BI所面对的诸多问题。敏捷BI可以以高度互动的方式为最终用户排序、筛选和统计数据,而不需要BI专家的指导。企业采用敏捷BI技术,可以更广泛的享受数据所体现的价值。

企业级 VS 敏捷的大数据

现在是大数据技术出场的时候了,EMC Greenplum、Teradata Aster Data等是企业级的代表,而1010data、Pervasive DataRush等则是敏捷的代表。这两类厂商都意识到了企业级和敏捷在BI领域的鸿沟,并努力解决这个问题。企业级大数据供应商知道他们需要敏捷,而敏捷的大数据厂商知道他们需要提供高质量的企业级解决方案。

企业级大数据供应商推出了一些灵活性解决方案。Greenplum推出了一个名为Chorus的产品,以提供一个协作环境,支持数据分析和查找的过程。Aster提供了一系列SQL扩展,允许Hadoop类型的查询使用类似与SQL的语法。在实现敏捷方面,这些产品的扩展是很大的进步,但对Greenplum和Aster企业级技术所带来的高昂价格标签,人们更感兴趣的问题是:能否以敏捷的大数据技术弥补企业级技术的不足,以更少的投资获得更多的回报?

敏捷的大数据解决企业级平台的难题

回头看看我们所提到的三种敏捷的大数据技术,首先的问题是:它们为什么被称作是敏捷的?

答案其实很简单,它们可以让用户获取非凡的数据洞察力,并削减价格。如下:

只需经过些许培训,用户就可以使用Splunk进行数据的查询、筛选和显示

1010data以电子表格的形式为用户提供大数据的处理界面

Pervasive DataRush以图形界面并行、高效地处理数据

一个敏捷的大数据在大批量处理中的案例

David Inbar是Pervasive的市场发展战略办公室的首席执行官,在价格低廉的做了一个实验演示,处理了足够庞大的可称之为大数据的数据。

DataRush的工具包消除了程序员并行编程的复杂度。即便是科技狂人,相对编写一个单线程的程序,并行编程也无异于是火箭科学。DataRush为并行编程提供了一种编程模型,以替代艰难的多核函数编码。比如,你可以编写一个基于组件模型的工作流应用程序,该工具包会自动将其转化为该工作流所允许的并行应用程序。

大数据系统如Hadoop具有横向扩展性。虽然DataRush可以承担此类角色,并能在数千台计算机中安装,但是它的不同之处在于它一般在一台计算机中安装,用以发掘多核系统的潜能。

DataRush最有特色的功能是它并不需要你知道计算机究竟有多少个核,当编写一个DataRush应用程序时,它会自动感知计算机上核心的数目,并最大限度地利用,以进行并行处理。

将敏捷组件集合起来构建企业级系统

敏捷技术在针对大数据创建智能业务系统方面具有极大优势,但仍然有相当长的路要走。敏捷BI能够降低成本,面对大数据的挑战,它将证明它的价值。


这篇关于云计算时代:当大数据遇到敏捷的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/635424

相关文章

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

在MySQL执行UPDATE语句时遇到的错误1175的解决方案

《在MySQL执行UPDATE语句时遇到的错误1175的解决方案》MySQL安全更新模式(SafeUpdateMode)限制了UPDATE和DELETE操作,要求使用WHERE子句时必须基于主键或索引... mysql 中遇到的 Error Code: 1175 是由于启用了 安全更新模式(Safe Upd

解决JavaWeb-file.isDirectory()遇到的坑问题

《解决JavaWeb-file.isDirectory()遇到的坑问题》JavaWeb开发中,使用`file.isDirectory()`判断路径是否为文件夹时,需要特别注意:该方法只能判断已存在的文... 目录Jahttp://www.chinasem.cnvaWeb-file.isDirectory()遇

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate