深入浅出基函数扩展模型(Basis expansion models , BEM)_BEM模型

2024-01-23 02:08

本文主要是介绍深入浅出基函数扩展模型(Basis expansion models , BEM)_BEM模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

通信信道的完整数学描述是想当复杂的,而维数低、阶数低的精简LTV信道模型被提出并且证明了这不影响有效模拟信道传输情况从而使得精简LTV信道模型在许多应用是非常有用的。为了简单起见,考虑精简的LTV信道离散时间模型,其I/O关系为

\[r[n]=\sum\limits_{m=0}^{M-1}{h[n,m]s[n-m]}\]

基于上述CE-BEM模型的考虑,为了更好地信道估计和模型分析,将上述定义重新从矩阵方式定义。考虑只有多条时延径但是其离散时延值都为\[m\]、只有一个多普勒频移问题的信道\[\mathbf{H}\]可以描述为
\[\mathbf{H}={{\mathbf{F}}_{d}}{{\left( {{h}_{m}}{{\mathbf{D}}^{m}} \right)}^{T}}\]                     (3-2-5)
其中\[{{h}_{m}}\]是衰落系数,其数值\[\left| {{h}_{m}} \right|<1\],\[{{\mathbf{F}}_{d}}\]定义为频偏矩阵,\[{{f}_{d}}\]为频偏数。\[\mathbf{D}\]是以第一行元素为\[[0,1,0,\cdots ,0]\]的循环矩阵,将\[\mathbf{D}\]简单记为\[\mathbf{D}\text{=}circ(0,1,0,\cdots ,0)\]。循环矩阵描述了收发信号的循环前缀的加载与移除过程。
\[{{\mathbf{F}}_{d}}\text{=}diag([{{e}^{j2\pi {{f}_{d}}\frac{0}{N}}},{{e}^{j2\pi {{f}_{d}}\frac{1}{N}}},\cdots ,{{e}^{j2\pi {{f}_{d}}\frac{N-1}{N}}}])\]             (3-2-6)
\[\mathbf{D}=\left[ \begin{matrix}
   0 & 1 & 0 & \cdots  & 0  \\
   0 & 0 & 1 & \cdots  & \vdots   \\
   \vdots  & 0 & 0 & \cdots  & 0  \\
   0 & \vdots  & 0 & \ddots  & 1  \\
   1 & 0 & \vdots  & \cdots  & 0  \\
\end{matrix} \right]\]                 (3-2-7)
更进一步地,考虑只有多条时延径但是其离散时延值都为\[m\]、有多个多普勒频移问题的信道\[\mathbf{H}\]可以描述为
\[\mathbf{H}=\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\left( {{h}_{m,d}}{{\mathbf{D}}^{m}} \right)}^{T}}}\]                   (3-2-8)
其中\[{{f}_{d}}\]是一组离散频偏基,基的总个数\[D\]根据实际信道自定义,它一定程度上决定了CE-BEM模型与实际信道相比的精准程度。此外,\[{{h}_{m,d}}\]描述了 多条时延径但是其离散时延值都为\[m\]且多普勒频移为\[{{f}_{d}}\]情况下的信道冲击响应。 于是考虑所有时延经的总信道\[\mathbf{H}\]可以描述为
\[\mathbf{H}=\sum\limits_{m=0}^{M-1}{\left( \sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\left( {{h}_{m,d}}{{\mathbf{D}}^{m}} \right)}^{T}}} \right)}\text{=}\sum\limits_{m=0}^{M-1}{\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\left( {{h}_{m,d}}{{\mathbf{D}}^{m}} \right)}^{T}}}}\]      (3-2-9)
其中\[M\]为最大时延径。令
\[h[n,m]\text{=}\sum\limits_{d=0}^{D-1}{{{h}_{m,d}}{{e}^{j2\pi {{f}_{d}}\frac{n}{N}}}}\]                  (3-2-10)
记一组测频基为\[{{\mathbf{f}}_{v}}={{[{{f}_{0}},{{f}_{1}},{{f}_{2}},\cdots ,{{f}_{D-1}}]}^{T}},{{f}_{d}}\in {{\mathbf{f}}_{v}}\],\[{{\mathbf{f}}_{v}}\]均为已知参量,其是根据信道的最大可能的多普勒频移均匀分布的一组测频基。那么信道矩阵\[\mathbf{H}\]可以写成
\[\mathbf{H}=\left[ \begin{matrix}
   h[0,0] & 0 & 0 & \cdots  & h[0,2] & h[0,1]  \\
   h[1,1] & h[1,0] & 0 & \cdots  & h[1,3] & h[1,2]  \\
   h[2,2] & h[2,1] & \ddots  & \ddots  & \vdots  & h[2,3]  \\
   \vdots  & h[3,2] & \vdots  & \ddots  & 0 & \vdots   \\
   0 & \vdots  & \vdots  & \vdots  & \ddots  & 0  \\
   \vdots  & 0 & \vdots  & \vdots  & h[N,1] & h[N,0]  \\
\end{matrix} \right]\]  (3-2-11)
或者
\[\mathbf{H}\text{=}\sum\limits_{m=0}^{M-1}{\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\left( {{h}_{m,d}}{{\mathbf{D}}^{m}} \right)}^{T}}}}=\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\mathbf{C}}_{d}}}\]            (3-2-12)
其中\[{{\mathbf{C}}_{d}}=circ{{([{{h}_{0,d}},{{h}_{1,d}},{{h}_{2,d}},\cdots ,{{h}_{M-1,d}},0,\cdots ,0])}^{T}}\triangleq circ{{(\mathbf{h}_{d}^{T})}^{T}}\],为了更好地推导出信道估计模型以及均衡模型,假设发射收发均已知的信号\[\mathbf{s}\],那么通信过程可以建模为\[\mathbf{r=Hs+w}\],也就是
\[\mathbf{r=Hs+w}\text{=}\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\mathbf{C}}_{d}}}\mathbf{s+w}\]                (3-2-13)
记\[\mathbf{S}_{\mathbf{s}}^{Toe}=circ{{({{\mathbf{s}}^{T}})}^{T}}\],\[\mathbf{R}_{\mathbf{r}}^{Toe}=circ{{({{\mathbf{r}}^{T}})}^{T}}\],\[\mathbf{W}_{\mathbf{w}}^{Toe}=circ{{({{\mathbf{w}}^{T}})}^{T}}\]那么根据(3-1-13)有
\[\mathbf{R}_{\mathbf{r}}^{Toe}\mathbf{=}\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\mathbf{C}}_{d}}\mathbf{S}_{\mathbf{s}}^{Toe}}\mathbf{+W}_{\mathbf{w}}^{Toe}\]               (3-2-14)
由于\[{{\mathbf{F}}_{d}}\]、\[{{\mathbf{C}}_{d}}\]、\[\mathbf{S}_{\mathbf{s}}^{Toe}\]均是循环矩阵,进一步地有
\[\mathbf{R}_{\mathbf{r}}^{Toe}\mathbf{=}\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}\mathbf{S}_{\mathbf{s}}^{Toe}{{\mathbf{C}}_{d}}}\mathbf{+W}_{\mathbf{w}}^{Toe}\]               (3-2-15)
因此只取\[\mathbf{R}_{\mathbf{r}}^{Toe}\]、\[{{\mathbf{C}}_{d}}\]的第一列就有 
 \[\mathbf{r=}\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}\mathbf{S}_{\mathbf{s}}^{Toe}{{\mathbf{h}}_{d}}}\mathbf{+w}\triangleq \mathbf{Ac+w}\]               (3-2-16)
其中\[\mathbf{A}\triangleq \left[ \begin{matrix}
   {{\mathbf{F}}_{0}}\mathbf{S}_{\mathbf{s}}^{Toe} & {{\mathbf{F}}_{1}}\mathbf{S}_{\mathbf{s}}^{Toe} & \cdots  & {{\mathbf{F}}_{D-1}}\mathbf{S}_{\mathbf{s}}^{Toe}  \\
\end{matrix} \right]\],以及\[\mathbf{c}\triangleq {{[\mathbf{h}_{0}^{T},\mathbf{h}_{1}^{T},\mathbf{h}_{2}^{T},\cdots ,\mathbf{h}_{D-1}^{T}]}^{T}}\]。到这里,可以知道,矩阵\[\mathbf{A}\]的大小为\[N\times ND\],同时矩阵\[\mathbf{A}\]是已知的。对于接收机而言,接收信号\[\mathbf{r}\]也是已知信号,整个信道估计问题归结为求解系数矩阵\[\mathbf{c}\]的问题。
而\[\mathbf{c}\]作为一个列向量,每一列中只有前M位置有数据,其他为零。这为\[\mathbf{r=Ac}\]的简化计算以及\[\mathbf{A}\]矩阵的裁剪提供了可能性。根据\[\mathbf{c}\]向量的特性可以知道,仅当\[N\ge MD\]时方程有唯一解,这是显然的。根据\[\mathbf{c}\]的稀疏性以及矩阵相乘的定义,对\[\mathbf{A}\]矩阵进行裁剪:取M列,舍弃N列,再取M列,舍弃N列……只到取尽。得到新矩阵\[{{\mathbf{A}}_{0}}\]。我们将这样的算子定义为\[\mathbf{Y}\]矩阵,\[\mathbf{Y}\]矩阵的数学表达式为
\[\mathbf{Y}={{\mathbf{E}}_{D}}\otimes [\begin{matrix}
   {{\mathbf{E}}_{M}}  \\
   {{\mathbf{0}}_{(N-M)\times M}}  \\
\end{matrix}]\]                      (3-2-17)
其中\[{{\mathbf{E}}_{D}}\]大小为\[D\times D\]的单位阵,\[{{\mathbf{E}}_{M}}\]为大小为\[M\times M\]的单位阵。 \[{{\mathbf{0}}_{(N-M)\times M}}\]为\[(N-M)\]行,\[M\]列的全零矩阵。值得再次指出的是,本节中的\[M\]为假设的、信道的最大可能的多径个数;\[D\]为假设的、信道中最大可能的多普勒个数;于是有
\[{{\mathbf{A}}_{0}}=\mathbf{AY}\]                         (3-2-18)
由于\[{{\mathbf{C}}_{d}}=circ{{([{{h}_{0,d}},{{h}_{1,d}},{{h}_{2,d}},\cdots ,{{h}_{M-1,d}},0,\cdots ,0])}^{T}}\triangleq circ{{(\mathbf{h}_{d}^{T})}^{T}}\]以及\[\mathbf{c}\triangleq {{[\mathbf{h}_{0}^{T},\mathbf{h}_{1}^{T},\mathbf{h}_{2}^{T},\cdots ,\mathbf{h}_{D-1}^{T}]}^{T}}\]的稀疏性,将有实际参数的部分记为\[{{\mathbf{c}}_{0}}\triangleq {{[\mathbf{h}_{00}^{T},\mathbf{h}_{10}^{T},\mathbf{h}_{20}^{T},\cdots ,\mathbf{h}_{D-10}^{T}]}^{T}}\],以及\[{{\mathbf{h}}_{d,0}}\triangleq [{{h}_{0,d}},{{h}_{1,d}},\cdots ,{{h}_{M-1,d}}]\] 
于是\[\mathbf{r=Ac+w}\]的参数估计问题转换为\[\mathbf{r=}{{\mathbf{A}}_{0}}{{\mathbf{c}}_{0}}\mathbf{+w}\]的参数估计问题。
最后,在本小节中,一个值得注意的点在于3.2.1节中的所有数学模型是基于发射信号存在循环前缀(CP)的基础上考虑的!对于没有CP的系统,上述所有关于循环矩阵的推论在时延大于一个时延单位的情况下是不成立的。而对于本文所提出的MMCM系统,由于存在一定的扩频增益,当实际信道的时延小于时带宽积P时,非采样级的数据传输信道\[{{\mathbf{H}}_{d}}=\mathbf{C}_{j}^{H}\mathbf{H}{{\mathbf{C}}_{j}}\]实际上是一个对角阵。在后续硬件研究以及实现中,不对发射信号添加循环前缀,但发射信号一直在不断地循环发射,这使得通信信道具有循环矩阵的特性。综上,上述信道模型成立的前提条件:实际信道的时延小于时带宽积P与循环前缀长度(可以为0)之和。
§3.2.2 基于BEM的均衡技术
为了估计出\[{{\mathbf{c}}_{0}}\] (记\[{{\mathbf{c}}_{0}}\]的估计值为\[{{\mathbf{\hat{c}}}_{0}}\])可以使用最小二乘估计(LS)等方法。
定义线性估计器\[\mathbf{F}\],\[\mathbf{F}\]使得\[{{\mathbf{\hat{c}}}_{0}}=\mathbf{Fr}\]成立,对于最小二乘估计法有
\[\mathbf{F}={{(\mathbf{A}_{0}^{H}{{\mathbf{A}}_{0}})}^{-1}}\mathbf{A}_{0}^{H}\]                      (3-2-19)
式中,\[\mathbf{F}\]的大小为\[N\times N\],这是一个大型矩阵,可以在构建实际通信系统前使用超级计算机计算出相应数值,离线载入通信系统中即可。求得\[{{\mathbf{\hat{c}}}_{0}}\]后可以根据(3-2-12~3-2-18)反推回信道矩阵\[\mathbf{H}\]的估计值。那么信道\[\mathbf{H}\]即可求得。下面对信号进行均衡。假设发射信号\[\mathbf{s}\]在接收端的估计值为\[\mathbf{\hat{s}}\]。假设线性估计器为\[\mathbf{\bar{E}}\],\[\mathbf{\bar{E}}\]使得\[\mathbf{\hat{s}}\text{=}\mathbf{\bar{E}r}\]
\[{{\mathbf{\bar{E}}}_{ZF}}={{({{\mathbf{H}}^{H}}\mathbf{H})}^{-1}}{{\mathbf{H}}^{H}}\]                     (3-2-21)
\[{{\mathbf{\bar{E}}}_{MMSE}}={{({{\mathbf{H}}^{H}}\mathbf{H}+\frac{\sigma _{{\mathbf{\tilde{w}}}}^{2}}{\sigma _{\mathbf{s}}^{2}}\mathbf{H})}^{-1}}{{\mathbf{H}}^{H}}\]                 (3-2-22)
其中\[\sigma _{{\mathbf{\tilde{w}}}}^{2}/\sigma _{\mathbf{s}}^{2}={{10}^{-SNR/10}}\]为噪声功率与信号功率之比,SNR为信噪比,单位为dB。上述过程可以称之为信道均衡过程。由于校正过程中校正的是采样时刻的时域波形,要求满足的是无码间串扰的时域条件,因此上述方法归为时域均衡的一种。



参考文献:

1. 窦高奇《快时变信道下的无线通信》

2. Giannakis G B, Tepedelenlioglu C. Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels[J]. Proceedings of the IEEE, 1998, 86(10):1969-1986.

这篇关于深入浅出基函数扩展模型(Basis expansion models , BEM)_BEM模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/634921

相关文章

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最