深入浅出基函数扩展模型(Basis expansion models , BEM)_BEM模型

2024-01-23 02:08

本文主要是介绍深入浅出基函数扩展模型(Basis expansion models , BEM)_BEM模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

通信信道的完整数学描述是想当复杂的,而维数低、阶数低的精简LTV信道模型被提出并且证明了这不影响有效模拟信道传输情况从而使得精简LTV信道模型在许多应用是非常有用的。为了简单起见,考虑精简的LTV信道离散时间模型,其I/O关系为

\[r[n]=\sum\limits_{m=0}^{M-1}{h[n,m]s[n-m]}\]

基于上述CE-BEM模型的考虑,为了更好地信道估计和模型分析,将上述定义重新从矩阵方式定义。考虑只有多条时延径但是其离散时延值都为\[m\]、只有一个多普勒频移问题的信道\[\mathbf{H}\]可以描述为
\[\mathbf{H}={{\mathbf{F}}_{d}}{{\left( {{h}_{m}}{{\mathbf{D}}^{m}} \right)}^{T}}\]                     (3-2-5)
其中\[{{h}_{m}}\]是衰落系数,其数值\[\left| {{h}_{m}} \right|<1\],\[{{\mathbf{F}}_{d}}\]定义为频偏矩阵,\[{{f}_{d}}\]为频偏数。\[\mathbf{D}\]是以第一行元素为\[[0,1,0,\cdots ,0]\]的循环矩阵,将\[\mathbf{D}\]简单记为\[\mathbf{D}\text{=}circ(0,1,0,\cdots ,0)\]。循环矩阵描述了收发信号的循环前缀的加载与移除过程。
\[{{\mathbf{F}}_{d}}\text{=}diag([{{e}^{j2\pi {{f}_{d}}\frac{0}{N}}},{{e}^{j2\pi {{f}_{d}}\frac{1}{N}}},\cdots ,{{e}^{j2\pi {{f}_{d}}\frac{N-1}{N}}}])\]             (3-2-6)
\[\mathbf{D}=\left[ \begin{matrix}
   0 & 1 & 0 & \cdots  & 0  \\
   0 & 0 & 1 & \cdots  & \vdots   \\
   \vdots  & 0 & 0 & \cdots  & 0  \\
   0 & \vdots  & 0 & \ddots  & 1  \\
   1 & 0 & \vdots  & \cdots  & 0  \\
\end{matrix} \right]\]                 (3-2-7)
更进一步地,考虑只有多条时延径但是其离散时延值都为\[m\]、有多个多普勒频移问题的信道\[\mathbf{H}\]可以描述为
\[\mathbf{H}=\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\left( {{h}_{m,d}}{{\mathbf{D}}^{m}} \right)}^{T}}}\]                   (3-2-8)
其中\[{{f}_{d}}\]是一组离散频偏基,基的总个数\[D\]根据实际信道自定义,它一定程度上决定了CE-BEM模型与实际信道相比的精准程度。此外,\[{{h}_{m,d}}\]描述了 多条时延径但是其离散时延值都为\[m\]且多普勒频移为\[{{f}_{d}}\]情况下的信道冲击响应。 于是考虑所有时延经的总信道\[\mathbf{H}\]可以描述为
\[\mathbf{H}=\sum\limits_{m=0}^{M-1}{\left( \sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\left( {{h}_{m,d}}{{\mathbf{D}}^{m}} \right)}^{T}}} \right)}\text{=}\sum\limits_{m=0}^{M-1}{\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\left( {{h}_{m,d}}{{\mathbf{D}}^{m}} \right)}^{T}}}}\]      (3-2-9)
其中\[M\]为最大时延径。令
\[h[n,m]\text{=}\sum\limits_{d=0}^{D-1}{{{h}_{m,d}}{{e}^{j2\pi {{f}_{d}}\frac{n}{N}}}}\]                  (3-2-10)
记一组测频基为\[{{\mathbf{f}}_{v}}={{[{{f}_{0}},{{f}_{1}},{{f}_{2}},\cdots ,{{f}_{D-1}}]}^{T}},{{f}_{d}}\in {{\mathbf{f}}_{v}}\],\[{{\mathbf{f}}_{v}}\]均为已知参量,其是根据信道的最大可能的多普勒频移均匀分布的一组测频基。那么信道矩阵\[\mathbf{H}\]可以写成
\[\mathbf{H}=\left[ \begin{matrix}
   h[0,0] & 0 & 0 & \cdots  & h[0,2] & h[0,1]  \\
   h[1,1] & h[1,0] & 0 & \cdots  & h[1,3] & h[1,2]  \\
   h[2,2] & h[2,1] & \ddots  & \ddots  & \vdots  & h[2,3]  \\
   \vdots  & h[3,2] & \vdots  & \ddots  & 0 & \vdots   \\
   0 & \vdots  & \vdots  & \vdots  & \ddots  & 0  \\
   \vdots  & 0 & \vdots  & \vdots  & h[N,1] & h[N,0]  \\
\end{matrix} \right]\]  (3-2-11)
或者
\[\mathbf{H}\text{=}\sum\limits_{m=0}^{M-1}{\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\left( {{h}_{m,d}}{{\mathbf{D}}^{m}} \right)}^{T}}}}=\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\mathbf{C}}_{d}}}\]            (3-2-12)
其中\[{{\mathbf{C}}_{d}}=circ{{([{{h}_{0,d}},{{h}_{1,d}},{{h}_{2,d}},\cdots ,{{h}_{M-1,d}},0,\cdots ,0])}^{T}}\triangleq circ{{(\mathbf{h}_{d}^{T})}^{T}}\],为了更好地推导出信道估计模型以及均衡模型,假设发射收发均已知的信号\[\mathbf{s}\],那么通信过程可以建模为\[\mathbf{r=Hs+w}\],也就是
\[\mathbf{r=Hs+w}\text{=}\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\mathbf{C}}_{d}}}\mathbf{s+w}\]                (3-2-13)
记\[\mathbf{S}_{\mathbf{s}}^{Toe}=circ{{({{\mathbf{s}}^{T}})}^{T}}\],\[\mathbf{R}_{\mathbf{r}}^{Toe}=circ{{({{\mathbf{r}}^{T}})}^{T}}\],\[\mathbf{W}_{\mathbf{w}}^{Toe}=circ{{({{\mathbf{w}}^{T}})}^{T}}\]那么根据(3-1-13)有
\[\mathbf{R}_{\mathbf{r}}^{Toe}\mathbf{=}\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}{{\mathbf{C}}_{d}}\mathbf{S}_{\mathbf{s}}^{Toe}}\mathbf{+W}_{\mathbf{w}}^{Toe}\]               (3-2-14)
由于\[{{\mathbf{F}}_{d}}\]、\[{{\mathbf{C}}_{d}}\]、\[\mathbf{S}_{\mathbf{s}}^{Toe}\]均是循环矩阵,进一步地有
\[\mathbf{R}_{\mathbf{r}}^{Toe}\mathbf{=}\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}\mathbf{S}_{\mathbf{s}}^{Toe}{{\mathbf{C}}_{d}}}\mathbf{+W}_{\mathbf{w}}^{Toe}\]               (3-2-15)
因此只取\[\mathbf{R}_{\mathbf{r}}^{Toe}\]、\[{{\mathbf{C}}_{d}}\]的第一列就有 
 \[\mathbf{r=}\sum\limits_{d=0}^{D-1}{{{\mathbf{F}}_{d}}\mathbf{S}_{\mathbf{s}}^{Toe}{{\mathbf{h}}_{d}}}\mathbf{+w}\triangleq \mathbf{Ac+w}\]               (3-2-16)
其中\[\mathbf{A}\triangleq \left[ \begin{matrix}
   {{\mathbf{F}}_{0}}\mathbf{S}_{\mathbf{s}}^{Toe} & {{\mathbf{F}}_{1}}\mathbf{S}_{\mathbf{s}}^{Toe} & \cdots  & {{\mathbf{F}}_{D-1}}\mathbf{S}_{\mathbf{s}}^{Toe}  \\
\end{matrix} \right]\],以及\[\mathbf{c}\triangleq {{[\mathbf{h}_{0}^{T},\mathbf{h}_{1}^{T},\mathbf{h}_{2}^{T},\cdots ,\mathbf{h}_{D-1}^{T}]}^{T}}\]。到这里,可以知道,矩阵\[\mathbf{A}\]的大小为\[N\times ND\],同时矩阵\[\mathbf{A}\]是已知的。对于接收机而言,接收信号\[\mathbf{r}\]也是已知信号,整个信道估计问题归结为求解系数矩阵\[\mathbf{c}\]的问题。
而\[\mathbf{c}\]作为一个列向量,每一列中只有前M位置有数据,其他为零。这为\[\mathbf{r=Ac}\]的简化计算以及\[\mathbf{A}\]矩阵的裁剪提供了可能性。根据\[\mathbf{c}\]向量的特性可以知道,仅当\[N\ge MD\]时方程有唯一解,这是显然的。根据\[\mathbf{c}\]的稀疏性以及矩阵相乘的定义,对\[\mathbf{A}\]矩阵进行裁剪:取M列,舍弃N列,再取M列,舍弃N列……只到取尽。得到新矩阵\[{{\mathbf{A}}_{0}}\]。我们将这样的算子定义为\[\mathbf{Y}\]矩阵,\[\mathbf{Y}\]矩阵的数学表达式为
\[\mathbf{Y}={{\mathbf{E}}_{D}}\otimes [\begin{matrix}
   {{\mathbf{E}}_{M}}  \\
   {{\mathbf{0}}_{(N-M)\times M}}  \\
\end{matrix}]\]                      (3-2-17)
其中\[{{\mathbf{E}}_{D}}\]大小为\[D\times D\]的单位阵,\[{{\mathbf{E}}_{M}}\]为大小为\[M\times M\]的单位阵。 \[{{\mathbf{0}}_{(N-M)\times M}}\]为\[(N-M)\]行,\[M\]列的全零矩阵。值得再次指出的是,本节中的\[M\]为假设的、信道的最大可能的多径个数;\[D\]为假设的、信道中最大可能的多普勒个数;于是有
\[{{\mathbf{A}}_{0}}=\mathbf{AY}\]                         (3-2-18)
由于\[{{\mathbf{C}}_{d}}=circ{{([{{h}_{0,d}},{{h}_{1,d}},{{h}_{2,d}},\cdots ,{{h}_{M-1,d}},0,\cdots ,0])}^{T}}\triangleq circ{{(\mathbf{h}_{d}^{T})}^{T}}\]以及\[\mathbf{c}\triangleq {{[\mathbf{h}_{0}^{T},\mathbf{h}_{1}^{T},\mathbf{h}_{2}^{T},\cdots ,\mathbf{h}_{D-1}^{T}]}^{T}}\]的稀疏性,将有实际参数的部分记为\[{{\mathbf{c}}_{0}}\triangleq {{[\mathbf{h}_{00}^{T},\mathbf{h}_{10}^{T},\mathbf{h}_{20}^{T},\cdots ,\mathbf{h}_{D-10}^{T}]}^{T}}\],以及\[{{\mathbf{h}}_{d,0}}\triangleq [{{h}_{0,d}},{{h}_{1,d}},\cdots ,{{h}_{M-1,d}}]\] 
于是\[\mathbf{r=Ac+w}\]的参数估计问题转换为\[\mathbf{r=}{{\mathbf{A}}_{0}}{{\mathbf{c}}_{0}}\mathbf{+w}\]的参数估计问题。
最后,在本小节中,一个值得注意的点在于3.2.1节中的所有数学模型是基于发射信号存在循环前缀(CP)的基础上考虑的!对于没有CP的系统,上述所有关于循环矩阵的推论在时延大于一个时延单位的情况下是不成立的。而对于本文所提出的MMCM系统,由于存在一定的扩频增益,当实际信道的时延小于时带宽积P时,非采样级的数据传输信道\[{{\mathbf{H}}_{d}}=\mathbf{C}_{j}^{H}\mathbf{H}{{\mathbf{C}}_{j}}\]实际上是一个对角阵。在后续硬件研究以及实现中,不对发射信号添加循环前缀,但发射信号一直在不断地循环发射,这使得通信信道具有循环矩阵的特性。综上,上述信道模型成立的前提条件:实际信道的时延小于时带宽积P与循环前缀长度(可以为0)之和。
§3.2.2 基于BEM的均衡技术
为了估计出\[{{\mathbf{c}}_{0}}\] (记\[{{\mathbf{c}}_{0}}\]的估计值为\[{{\mathbf{\hat{c}}}_{0}}\])可以使用最小二乘估计(LS)等方法。
定义线性估计器\[\mathbf{F}\],\[\mathbf{F}\]使得\[{{\mathbf{\hat{c}}}_{0}}=\mathbf{Fr}\]成立,对于最小二乘估计法有
\[\mathbf{F}={{(\mathbf{A}_{0}^{H}{{\mathbf{A}}_{0}})}^{-1}}\mathbf{A}_{0}^{H}\]                      (3-2-19)
式中,\[\mathbf{F}\]的大小为\[N\times N\],这是一个大型矩阵,可以在构建实际通信系统前使用超级计算机计算出相应数值,离线载入通信系统中即可。求得\[{{\mathbf{\hat{c}}}_{0}}\]后可以根据(3-2-12~3-2-18)反推回信道矩阵\[\mathbf{H}\]的估计值。那么信道\[\mathbf{H}\]即可求得。下面对信号进行均衡。假设发射信号\[\mathbf{s}\]在接收端的估计值为\[\mathbf{\hat{s}}\]。假设线性估计器为\[\mathbf{\bar{E}}\],\[\mathbf{\bar{E}}\]使得\[\mathbf{\hat{s}}\text{=}\mathbf{\bar{E}r}\]
\[{{\mathbf{\bar{E}}}_{ZF}}={{({{\mathbf{H}}^{H}}\mathbf{H})}^{-1}}{{\mathbf{H}}^{H}}\]                     (3-2-21)
\[{{\mathbf{\bar{E}}}_{MMSE}}={{({{\mathbf{H}}^{H}}\mathbf{H}+\frac{\sigma _{{\mathbf{\tilde{w}}}}^{2}}{\sigma _{\mathbf{s}}^{2}}\mathbf{H})}^{-1}}{{\mathbf{H}}^{H}}\]                 (3-2-22)
其中\[\sigma _{{\mathbf{\tilde{w}}}}^{2}/\sigma _{\mathbf{s}}^{2}={{10}^{-SNR/10}}\]为噪声功率与信号功率之比,SNR为信噪比,单位为dB。上述过程可以称之为信道均衡过程。由于校正过程中校正的是采样时刻的时域波形,要求满足的是无码间串扰的时域条件,因此上述方法归为时域均衡的一种。



参考文献:

1. 窦高奇《快时变信道下的无线通信》

2. Giannakis G B, Tepedelenlioglu C. Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels[J]. Proceedings of the IEEE, 1998, 86(10):1969-1986.

这篇关于深入浅出基函数扩展模型(Basis expansion models , BEM)_BEM模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/634921

相关文章

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验