各类优化方法总结(从SGD到FTRL)

2024-01-20 18:08

本文主要是介绍各类优化方法总结(从SGD到FTRL),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 目录
  • 各类优化方法总结
    • 1. SGD
    • 2. Momentum
    • 3. Nesterov
    • 4. Adagrad
    • 5. Adadelta
    • 6. Adam
    • 7. FTRL
  • 参考资料


各类优化方法总结

为了方便描述,假设第 t t 轮要更新的某参数是wt loss l o s s 函数关于 wt w t 的偏导数表示为 gt g t ,即:

gt=Lwt g t = ∂ L ∂ w t

1. SGD

wt=wt1ηgt w t = w t − 1 − η ⋅ g t

可以对一个样本都计算一次梯度并更新一次参数,也可以先对一整个 batch b a t c h 一起计算梯度,再更新参数(称为batch-SGD)。

优点

  1. 简单

缺点

  1. 所有的参数使用同样的学习率 η η ,不够灵活
  2. 容易陷入局部最优
  3. 需要人工设定 η η

2. Momentum

mt=μmt1+gtwt=wt1ηmt m t = μ ⋅ m t − 1 + g t w t = w t − 1 − η ⋅ m t

实际上就是用加权累积的梯度代替本轮梯度,每次的更新方向并不是纯粹的梯度,而是要加上上一次迭代的一部分。可以将第 t t 轮的梯度看成下面这个式子,显然越早期的梯度贡献越小。
mt=i=1tμtigi

此外,将 Δwt Δ w t 展开得到 Δwt=ηmt=ημmtηgt Δ w t = − η ⋅ m t = − η ⋅ μ ⋅ m t − η ⋅ g t ,可以看到momentum不会直接改变当前梯度 gt g t

优点
momentum在前后梯度一致时有利于加速收敛,不一致时能做方向纠正,同时减少陷入局部最优。

  1. 在前后两次梯度方向比较接近时(一般是训练初期),前后两次在相近的方向上叠加,能够加速训练。
  2. 在前后两次梯度方向相差很远时(训练后期在局部最小附近来回震荡),虽然 gt g t 可能很小,但是有历史梯度的累积在, mt m t 不至于太小,有利于跳出局部最优。

缺点

  1. 仍然需要人工设定 η η

3. Nesterov

gt=f(wt1ημmt1) g t = ▽ f ( w t − 1 − η ⋅ μ ⋅ m t − 1 )

mt=μmt1+gtwt=wt1ηmt m t = μ ⋅ m t − 1 + g t w t = w t − 1 − η ⋅ m t

可以看到,Nesterov只是在Momentum的基础上,修改了当前梯度 gt g t ,让历史累积的梯度 mt1 m t − 1 也影响到当前的梯度 gt g t

缺点

  1. 仍然需要人工设定 η η

4. Adagrad

nt=nt1+g2twt=wt1ηnt+ϵgt n t = n t − 1 + g t 2 w t = w t − 1 − η n t + ϵ ⋅ g t

nt n t 其实是 tig2i ∑ i t g i 2 ,对于稀疏梯度,该平方和一般会比较小,使得参数的学习率偏大,对于非稀疏梯度,该平方和一般比较大,使得参数学习率偏小。因此Adagrad适合用来处理稀疏梯度。

优点

  1. 每个参数都有自己的学习率。
  2. 训练初期 gt g t 平方和比较小,学习率较大,能够加速训练
  3. 训练后期 gt g t 平方和比较大,学习率较小,能够约束梯度
  4. 适合处理稀疏梯度

缺点

  1. 仍然需要人工设定 η η
  2. 训练后期平方和太大,使得梯度 0 → 0 ,容易导致训练提前结束

5. Adadelta

E[g2]t=vE[g2]t1+(1v)g2t E [ g 2 ] t = v ⋅ E [ g 2 ] t − 1 + ( 1 − v ) ⋅ ⋅ g t 2

wt=wt1t1r=1(wrwr1)E[g2]t+ϵ w t = w t − 1 − ∑ r = 1 t − 1 ( w r − w r − 1 ) E [ g 2 ] t + ϵ

为了减轻Adagrad梯度衰减过快的问题,Adadelta用历史梯度平方的集权均值代替平方和。

优点

  1. 具有Adagrad的优点
  2. 不需要人工设定 η η
  3. 缓解了Adagrad梯度衰减过快的问题

6. Adam

mt=μmt1+(1μ)gtnt=vnt1+(1v)g2t m t = μ ⋅ m t − 1 + ( 1 − μ ) ⋅ g t n t = v ⋅ n t − 1 + ( 1 − v ) ⋅ g t 2

m̂ t=mt1μn̂ t=nt1v m ^ t = m t 1 − μ n ^ t = n t 1 − v

wt=wt1m̂ tn̂ t+ϵ w t = w t − 1 − m ^ t n ^ t + ϵ

mt m t nt n t 可以分别看作对历史梯度的一阶和二阶矩估计,即对期望 E[g]t E [ g ] t E[g2]t E [ g 2 ] t 的估计, m̂ t m ^ t n̂ t n ^ t 的处理是校正为无偏估计。

优点

  1. 实际上只需要保存梯度的均值,所以基本不需要额外的内存
  2. 不需要人工设定全局学习率 η η
  3. 有观点认为,RNN使用Adam速度快,效果好

7. FTRL

wt+1=argminw(g1:tw+12s=1tσs||wws||22+λ1||w||1) w t + 1 = arg ⁡ min w ( g 1 : t ⋅ w + 1 2 ∑ s = 1 t σ s | | w − w s | | 2 2 + λ 1 | | w | | 1 )

主要用于CTR预测的在线训练,成千上万维度导致大量稀疏特征。一般希望模型参数更加稀疏,但是简单的L1正则无法真正做到稀疏,一些梯度截断方法(TG)的提出就是为了解决这个问题,在这其中FTRL是兼备精度和稀疏性的在线学习方法。FTRL的基本思想是将接近于0的梯度直接置零,计算时直接跳过以减少计算量。

这里给出工程上的伪代码,里面的四个参数是可调的,具体原理尚且没时间看懂,以后有时间的话研究一下Google那篇论文。
这里写图片描述


参考资料

  1. 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)- ycszen
  2. tensorflow optimizer 总结 - 跬步达千里
  3. Google FTRL论文 - Ad Click Prediction: a View from the Trenches
  4. 梯度下降优化算法综述
  5. 在线学习算法FTRL详解 - 一寒惊鸿
  6. 各大公司广泛使用的在线学习算法FTRL详解
  7. CTR预测算法之FTRL-Proximal

这篇关于各类优化方法总结(从SGD到FTRL)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626864

相关文章

Nginx安全防护的多种方法

《Nginx安全防护的多种方法》在生产环境中,需要隐藏Nginx的版本号,以避免泄漏Nginx的版本,使攻击者不能针对特定版本进行攻击,下面就来介绍一下Nginx安全防护的方法,感兴趣的可以了解一下... 目录核心安全配置1.编译安装 Nginx2.隐藏版本号3.限制危险请求方法4.请求限制(CC攻击防御)

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I