大数据算法课程笔记8a:page replacement algorithm

2024-01-20 10:20

本文主要是介绍大数据算法课程笔记8a:page replacement algorithm,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本节课主要是介绍page replacement algorithm的相关算法,包括offline和online。


1. 问题简介

这个是体系结构里面的经典问题,内存小、硬盘大,内存快、硬盘慢。所以CPU从内存中读取数据,而内存从硬盘中读取数据。那我们希望内存读取硬盘的次数尽量减少,这样可以减少程序的运行时间,而减少次数的算法主要依赖于page replacement algorithm。

所谓page fault,即内存中不存在所需数据而引入的错误,为了解决这个错误就需要从硬盘中读取数据到内存中。所以每个page fault都对应于一次硬盘读取,耗费大量时间。读到的数据需要覆盖内存中的某些现有数据,如何选择被替代的内存中的数据就是page replacement algorithm处理的问题。

(内存和硬盘的关系和cache与内存的关系一样,都是使用类似的思想)

2. Clairvoyant/offline algorithm

算法可以使用未来信息,即可以知道整个请求序列。(这个要求难以在实际中满足)

clairvoyant 算法的最优结果也是所有算法所能满足的最优算法,定义:Given a page arrival sequence z , OPT(z) represents the minimum number of page faults by the best clairvoyant algorithm knowing the sequence z of page arrivals.

2.1. Furthest in the future

FIF算法是一种clairvoyant 算法,并且满足Cost(FIF,z)=OPT(z),即FIF算法的结果是最优的。

算法简介:每次选取最晚被请求的元素进行替换。具体地,设第 i 次请求ri造成了一次page fault,对于cache中的每个元素 cj ,定义 fj=argmink{rk==cjk>i} ,则选择cache中的第 j=argmaxkfk 个元素 cj 进行替换。

例子

request|cache elements|page fault|evicted item|
a-,-,-True-
ba,-,-True-
ca,b,-True-
da,b,cTruec
aa,b,dFalse
ea,b,dTrued
ba,b,eFalse
aa,b,eFalse
ca,b,eTruea
ec,b,eFalse
dc,b,eTruec
bd,b,eFalse

2.2. FIF 最优性的证明

参考资料

https://blog.henrypoon.com/blog/2014/02/02/proof-of-the-farthest-in-future-optimal-caching-algorithm/

https://cseweb.ucsd.edu/classes/wi12/cse202-a/lecture4-final.pdf

基本思想:大框架是归纳法,结合分类讨论法。

设FIF的replacement schedule为SFF,而对于任意满足请求序列的schedule S,我们需要证明 #fetches(SFF)#fetches(S) 。所谓schedule,记录了算法的所有操作,例如insert a、evict b,通常一个page fault对应于一对insert和evict。 schedule 的一个子集是reduced schedule,即lazy schedule,只有当request某元素的时候才会insert该元素。一个事实是:对于任意schedule S , 永远存在一个reduced schedule S,满足 #fetches(S)#fetches(S)

reducedbiji

基于以上的定义以及事实,我们开始证明FIF的最优性。明确目标以及归纳法的假设:

目标 S,#fetches(SFF)#fetches(S) ,即对于所有可以满足request的reduced schedule S ,均满足硬盘读取数不小于SFF的读取数。

归纳法的假设 Sj , such that Sj makes the same decisions as SFF for requests from r1 to rj , and #fetches(Sj)#fetches(S) .

Base Case: 令 S0=S , 则有 #fetches(S0)#fetches(S) ,并且 S0=SFF for requests from r1 to r0 (NULL)

假设存在 Sk 满足 Sk makes the same decisions as SFF for requests from r1 to rk , and #fetches(Sk)#fetches(S) .

我们从 Sk 构造 Sk+1 ,使得 Sk+1 makes the same decisions as SFF for requests from r1 to rk+1 , and #fetches(Sk+1)#fetches(S) . 方法如下:

  1. rk+1 in cache,则 Sk SFF 均不会进行任何操作(SFF基于FIF算法, Sk 基于reduced),所以 Sk+1=Sk
  2. rk+1 misses, and Sk and SFF evict the same element, 则有 Sk rk+1 处的决策和 SFF 一致,所以 Sk+1=Sk
  3. rk+1 misses, and Sk and SFF evict different elements, suppose Sk evicts ci and SFF evicts cj . 即两者分别替换的不同元素,从而有两个元素 ci,cj 参与讨论,而对于两个元素分别有request以及evict两种可能操作。我们对 rk+1 之后 Sk 首次涉及 ci,cj 的操作进行分情况讨论:
    1. Next there is a request rd to ck , and Sk evicts cj , 即 Sk 需要替换 cj 了。调换两者的删除位置,使得 Sk+1 在第 rk+1 处与 SFF 一样删除 cj ,而在 rd 处删除 ck ,同样满足请求序列,并且 #fetches(Sk+1)=#fetches(Sk)#fetches(SFF)
    2. Next, there is a request rd to ci , and Sk evicts cj . 即 Sk 删除 ci 之后,在请求序列里又遇到了 ci ,而且这次删除了 cj 。我们使得 Sk+1 rk+1 处删除 cj ,而在 rd 处即不需要进行任何操作,同样满足请求序列,并且 #fetches(Sk+1)=#fetches(Sk)1>#fetches(SFF)
    3. Next, there is a request rd to ci and Sk evicts c . 即 Sk 删除 ci 之后,在请求序列里又遇到了 ci ,这次删除了一个非 cj 的元素。注意到此次构造 Sk+1 需要满足 cj 不被删除、所以我们同样使得 Sk+1 在第 rk+1 处与 SFF 一样删除 cj ,而在 rd 处与 Sk 一样删除 c ,而插入 cj 。这样构造的 Sk+1 不是reduced,需要基于上诉Fact转化为reduced schedule Sk+1 ,并且满足 Sk+1 makes the same decisions as SFF for requests from r1 to rk+1 , and #fetches(Sk+1)#fetches(Sk+1)=#fetches(Sk)#fetches(S) .
    4. Next, there is a request to cj , which is not possible, since fj>fi .

综上,基于归纳原则,我们证明了 Sn , such that Sn makes the same decisions as SFF for requests from r1 to rn , 从而 Sn=SFF 而且 #fetches(SFF)=#fetches(Sn)#fetches(S) .

基于上诉结论,我们最终证明了FIF的最优性。

3. Non-Clairvayant/Online algorithm

在线算法只能基于过去的信息进行决策。例如经典算法中常会使用出现的时间、出现的频率、最近出现的密度等等,各种算法在平均page fault number以及使用空间、时间之间做平衡,基于不同的请求序列分布以及权衡可以得到不同的算法。

这里主要介绍一种最简单的在线算法,然后对其进行分析。进而讨论所有在线算法的下界。

3.1. 评价函数 Metric

任意算法 A 对于给定的请求序列z的page fault数目用 Cost(A,z) 表示。而 OPT(z)=minACost(A,z) ,即最优算法(包括offline algorithm)的page fault数目。

使用 Cost(A,z)OPT(z) 评价算法 A 在给定z上的表现,进而有最差情况 maxzCost(A,z)OPT(z) (competitve ratio)以及平均情况 zuCost(A,z)OPT(z)

3.2. least recently used algorithm (LRU)

算法简介:如名字所述,每次选择最不近使用的元素进行替换。具体地,设第 i 次请求ri造成了一次page fault,对于cache中的每个元素 cj ,定义 lj=argmaxk{rk==cjk<i} ,则选择cache中的第 j=argminklk 个元素 cj 进行替换。

例子

request|cache elements|page fault|evicted item|
a-,-,-True-
ba,-,-True-
ca,b,-True-
da,b,cTruea
ad,b,cTrueb
ed,a,cTruec
bd,a,eTrued
ab,a,eFalse
cb,a,eTruee
eb,a,cTrueb
de,a,cTruea
be,d,cTruec

性能分析

lru

首先将请求序列分为 b 个区块,每个区块内最多有k个元素,并且使得 b 尽可能小。

那么LRU对于每个区块最多遇到k个page fault,从而整体而言最多 bk 个page fault。而对于最优算法,至少遇到 b 个page fault,因为每次跳跃区块的时候都会遇到一个前一区块从未遇过的第k+1个元素,从而引入page fault。

所以LRU的competitive ratio k ,其中 k 为cache size。

3.3. 所有确定性online page replacement algorithm的competitive ratio下界

Claim:对于所有determinisitic online page replacement algorithm A, z,Cost(A,z)OPT(z)=k

证明方法很简单,构造一个只包含 k+1 个元素的请求序列,每次都使得 z 请求cache中不存在的元素(可以实现,因为算法只基于过去信息,而且是确定性的),那么Cost(A,z)=n,而 Cost(FIF,z)=n/k ,进而 Cost(A,z)OPT(z)=k

这篇关于大数据算法课程笔记8a:page replacement algorithm的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/625682

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖