标签传播算法(Label Propagation Algorithm)

2024-01-20 08:50

本文主要是介绍标签传播算法(Label Propagation Algorithm),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录:
1. 半监督学习(Semi-supervised Learning SSL)
2. 完全图
3. 标签传播算法的基本思路
4. 标签传播算法
5. 算法描述
6. 标签传播算法的基本特点
7. 代码实现

1. 半监督学习(Semi-supervised Learning SSL)

半监督学习是一种有监督学习和无监督学习想结合的一种方法,其主要思想是基于数据分布上的模型假设,利用少量的已标注数据进行指导并预测未标记数据的标记,并合并到标记数据集中去。

2. 完全图

在图论的数学领域,完全图是一个简单的无向图,其中每对不同的顶点之间都恰连有一条边相连。完整的有向图又是一个有向图,其中每对不同的顶点通过一对唯一的边缘(每个方向一个)连接。n个端点的完全图有n个端点以及n(n − 1) / 2条边,以Kn表示。它是(k − 1)-正则图。所有完全图都是它本身的团(clique)
这里写图片描述

3. 标签传播算法的基本思路

标签传播算法是基于图的半监督学习方法,基本思路是从已标记的节点的标签信息来预测未标记的节点的标签信息,利用样本间的关系,建立完全图模型。
每个节点标签按相似度传播给相邻节点,在节点传播的每一步,每个节点根据相邻节点的标签来更新自己的标签,与该节点相似度越大,其相邻节点对其标注的影响权值越大,相似节点的标签越趋于一致,其标签就越容易传播。在标签传播过程中,保持已标记的数据的标签不变,使其将标签传给未标注的数据。最终当迭代结束时,相似节点的概率分布趋于相似,可以划分到一类中。

4.标签传播算法

  1. ( x 1 , y 1 ) . . . ( x l , y l ) 是 已 标 注 的 数 据 , Y L = { y 1 , . . . y L } ∈ { 1 , . . . , C } (x_1, y_1)...(x_l, y_l)是已标注的数据,Y_L=\lbrace y_1, ... y_L \rbrace\in \lbrace1, ..., C\rbrace (x1,y1)...(xl,yl)YL={y1,...yL}{1,...,C},类别数C已知,且均存在于标签数据中。令 ( x l + 1 , y l + 1 ) . . . ( x l + u , y l + u ) 为 未 标 注 数 据 , 则 Y U = { y l + 1 , . . . , y l + u } 是 没 有 标 签 的 , 通 常 l < < u , 也 就 是 说 有 标 签 的 数 据 的 数 量 远 远 小 于 没 有 标 签 的 数 据 的 数 量 , 让 X = { x 1 , . . , x l + u } ∈ R D , 则 问 题 转 换 为 从 X 和 Y L 中 去 预 测 Y U (x_{l+1},y_{l+1})...(x_{l+u}, y_{l+u})为未标注数据,则Y_U=\lbrace y_{l+1}, ..., y_{l+u} \rbrace 是没有标签的, 通常l<<u,也就是说有标签的数据的数量远远小于没有标签的数据的数量,让X= \lbrace{x_1, .., x_{l+u}} \rbrace\in R^D,则问题转换为从X和Y_L中去预测Y_U (xl+1,yl+1)...(xl+u,yl+u)YU={yl+1,...,

这篇关于标签传播算法(Label Propagation Algorithm)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/625461

相关文章

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Maven pom.xml文件中build,plugin标签的使用小结

《Mavenpom.xml文件中build,plugin标签的使用小结》本文主要介绍了Mavenpom.xml文件中build,plugin标签的使用小结,文中通过示例代码介绍的非常详细,对大家的学... 目录<build> 标签Plugins插件<build> 标签<build> 标签是 pom.XML

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

HTML5中下拉框<select>标签的属性和样式详解

《HTML5中下拉框<select>标签的属性和样式详解》在HTML5中,下拉框(select标签)作为表单的重要组成部分,为用户提供了一个从预定义选项中选择值的方式,本文将深入探讨select标签的... 在html5中,下拉框(<select>标签)作为表单的重要组成部分,为用户提供了一个从预定义选项中

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1