记录::关键点检测数据转化和可视化LSP、FLIC转yolov8-pose的txt

2024-01-19 18:04

本文主要是介绍记录::关键点检测数据转化和可视化LSP、FLIC转yolov8-pose的txt,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近想试一下关键点检测的效果,先从yolov8-pose开始,不想跑coco那么大的数据集,就找了两个比较小的

yolov8-pose的txt数据格式如下:

        类别、box、节点,数据做了归一化

可视化只显示了点,没有连线

参数:

        mat_path 是 数据集mat文件所在地址,包含mat文件名
        image_path 是 数据集图像的地址,不包含图像名
        save_path 是 转换为txt后保存的地址
        save_path 是可视化结果保存的地址

1、lsp

LSP:运动场景,单人数据集,截取后的单人区域,图片很小,2000张图片,14个节点

def save_joints_lsp(mat_path, image_path, save_path,save_path1):"""mat_path 是 lsp数据集mat文件所在地址,包含mat文件名image_path 是 lsp数据集图像的地址,不包含图像名save_path 是 转换为txt后保存的地址save_path 是可视化结果保存的地址lsp数据集共2000张图片"""joints = loadmat(mat_path)joints = joints["joints"].transpose(2, 0, 1)joints = joints[:, :, :]#num = 0for img_path in glob.glob("%s/*.jpg" % image_path):img_name = img_path.split("/")[-1].split(".")[0]img = Image.open(img_path)img = np.array(img, dtype=np.uint8)img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)imgh, imgw = img.shape[:2]num = int(img_name[2:])cen_points = joints[num-1, ...]points_num = cen_points.shape[-1]point_dict = {}ps = []for points_ in range(points_num):point_x = cen_points[0, points_]point_y = cen_points[1, points_]vi = cen_points[2, points_]if vi==0:vi = 2.0elif vi==2:print(name)point_dict[str(points_)] = [point_x/imgw, point_y/imgh,vi]# cv2.circle(img, (int(point_x), int(point_y)), 5, colors[points_],#                   thickness=-1)ps.append([int(point_x), int(point_y)])# x, y, w, h = cv2.boundingRect(np.array([ps]))# x = (x+w/2)/imgw# y = (y+h/2)/imgh# w = (w+6)/imgw# h = (h+6)/imghx =0.5y = 0.5w =1h=1with open(os.path.join(save_path, img_name + ".txt"), "w") as f:f.write(str(0)+" "+str(x)+" "+str(y)+" "+str(w)+" "+str(h))cv2.rectangle(img,(int(x*imgw-w*imgw/2),int(y*imgh-h*imgh/2)),(int(x*imgw+w*imgw/2),int(y*imgh+h*imgh/2)),(0,0,255),5)for i in point_dict:p = point_dict[i]f.write(" "+str(p[0]) + " " + str(p[1]) + " " + str(p[2]))cv2.circle(img, (int(p[0]*imgw), int(p[1]*imgh)), 5, colors[points_],thickness=-1)f.write("\n")#img_txt.write(str(point_dict))f.close()#num += 1# 若不想看图片中关键点的位置是否准确,请注释掉后面两行# cv2.imshow("img", img)# cv2.waitKey()cv2.imwrite(save_path1+"/"+img_name+".jpg",img)

2、FLIC

FLIC:电影场景,多人情况下label也只有单人,labels有29个节点,大多为nan,选了9个节点

def save_flic(mat_path, image_path, save_path,save_path1):examples = loadmat(mat_path)examples = examples["examples"][0]joint_ids = ['lsho', 'lelb', 'lwri', 'rsho', 'relb', 'rwri', 'lhip','lkne', 'lank', 'rhip', 'rkne', 'rank', 'leye', 'reye','lear', 'rear', 'nose', 'msho', 'mhip', 'mear', 'mtorso','mluarm', 'mruarm', 'mllarm', 'mrlarm', 'mluleg', 'mruleg','mllleg', 'mrlleg']available = ['lsho', 'lelb', 'lwri', 'rsho', 'relb', 'rwri', 'lhip','rhip', 'head']for i, example in enumerate(examples):joint = example[2].Timg_name = example[3][0]joints = dict(zip(joint_ids, joint))img =cv2.imread(image_path+"/"+img_name)img_name = img_name.split(".")[0]imgh, imgw = img.shape[:2]point_dict = {}ps = []head = np.asarray(joints['reye']) + \np.asarray(joints['leye']) + \np.asarray(joints['nose'])head /= 3joints['head'] = head.tolist()for name in available:#joint_pos.append(joints[name])point = joints[name]point_dict[name] = [point[0]/imgw, point[1]/imgh,2.0]ps.append([int(point[0]), int(point[1])])x, y, w, h = cv2.boundingRect(np.array([ps]))x = (x+w/2)/imgwy = (y+h/2)/imghw = (w+20)/imgwh = (h+20)/imghwith open(os.path.join(save_path, img_name + ".txt"), "w") as f:f.write(str(0) + " " + str(x) + " " + str(y) + " " + str(w) + " " + str(h))cv2.rectangle(img, (int(x * imgw - w * imgw / 2), int(y * imgh - h * imgh / 2)),(int(x * imgw + w * imgw / 2), int(y * imgh + h * imgh / 2)),(0, 0, 255), 5)c =0for i in point_dict:p = point_dict[i]f.write(" " + str(p[0]) + " " + str(p[1]) + " " + str(p[2]))cv2.circle(img, (int(p[0] * imgw), int(p[1] * imgh)), 5, colors[c],thickness=-1)f.write("\n")c = c+1# img_txt.write(str(point_dict))f.close()# num += 1# 若不想看图片中关键点的位置是否准确,请注释掉后面两行# cv2.imshow("img", img)# cv2.waitKey()cv2.imwrite(save_path1 + "/" + img_name + ".jpg", img)

完整代码:https://github.com/ziyaoma/detect-pose

参考:LSP数据集与MPII数据集标签转txt文件(字典形式储存)_mpii标注文件修改成txt-CSDN博客

https://github.com/Fangyh09/PoseDatasets

这篇关于记录::关键点检测数据转化和可视化LSP、FLIC转yolov8-pose的txt的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/623229

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro