记录::关键点检测数据转化和可视化LSP、FLIC转yolov8-pose的txt

2024-01-19 18:04

本文主要是介绍记录::关键点检测数据转化和可视化LSP、FLIC转yolov8-pose的txt,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近想试一下关键点检测的效果,先从yolov8-pose开始,不想跑coco那么大的数据集,就找了两个比较小的

yolov8-pose的txt数据格式如下:

        类别、box、节点,数据做了归一化

可视化只显示了点,没有连线

参数:

        mat_path 是 数据集mat文件所在地址,包含mat文件名
        image_path 是 数据集图像的地址,不包含图像名
        save_path 是 转换为txt后保存的地址
        save_path 是可视化结果保存的地址

1、lsp

LSP:运动场景,单人数据集,截取后的单人区域,图片很小,2000张图片,14个节点

def save_joints_lsp(mat_path, image_path, save_path,save_path1):"""mat_path 是 lsp数据集mat文件所在地址,包含mat文件名image_path 是 lsp数据集图像的地址,不包含图像名save_path 是 转换为txt后保存的地址save_path 是可视化结果保存的地址lsp数据集共2000张图片"""joints = loadmat(mat_path)joints = joints["joints"].transpose(2, 0, 1)joints = joints[:, :, :]#num = 0for img_path in glob.glob("%s/*.jpg" % image_path):img_name = img_path.split("/")[-1].split(".")[0]img = Image.open(img_path)img = np.array(img, dtype=np.uint8)img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)imgh, imgw = img.shape[:2]num = int(img_name[2:])cen_points = joints[num-1, ...]points_num = cen_points.shape[-1]point_dict = {}ps = []for points_ in range(points_num):point_x = cen_points[0, points_]point_y = cen_points[1, points_]vi = cen_points[2, points_]if vi==0:vi = 2.0elif vi==2:print(name)point_dict[str(points_)] = [point_x/imgw, point_y/imgh,vi]# cv2.circle(img, (int(point_x), int(point_y)), 5, colors[points_],#                   thickness=-1)ps.append([int(point_x), int(point_y)])# x, y, w, h = cv2.boundingRect(np.array([ps]))# x = (x+w/2)/imgw# y = (y+h/2)/imgh# w = (w+6)/imgw# h = (h+6)/imghx =0.5y = 0.5w =1h=1with open(os.path.join(save_path, img_name + ".txt"), "w") as f:f.write(str(0)+" "+str(x)+" "+str(y)+" "+str(w)+" "+str(h))cv2.rectangle(img,(int(x*imgw-w*imgw/2),int(y*imgh-h*imgh/2)),(int(x*imgw+w*imgw/2),int(y*imgh+h*imgh/2)),(0,0,255),5)for i in point_dict:p = point_dict[i]f.write(" "+str(p[0]) + " " + str(p[1]) + " " + str(p[2]))cv2.circle(img, (int(p[0]*imgw), int(p[1]*imgh)), 5, colors[points_],thickness=-1)f.write("\n")#img_txt.write(str(point_dict))f.close()#num += 1# 若不想看图片中关键点的位置是否准确,请注释掉后面两行# cv2.imshow("img", img)# cv2.waitKey()cv2.imwrite(save_path1+"/"+img_name+".jpg",img)

2、FLIC

FLIC:电影场景,多人情况下label也只有单人,labels有29个节点,大多为nan,选了9个节点

def save_flic(mat_path, image_path, save_path,save_path1):examples = loadmat(mat_path)examples = examples["examples"][0]joint_ids = ['lsho', 'lelb', 'lwri', 'rsho', 'relb', 'rwri', 'lhip','lkne', 'lank', 'rhip', 'rkne', 'rank', 'leye', 'reye','lear', 'rear', 'nose', 'msho', 'mhip', 'mear', 'mtorso','mluarm', 'mruarm', 'mllarm', 'mrlarm', 'mluleg', 'mruleg','mllleg', 'mrlleg']available = ['lsho', 'lelb', 'lwri', 'rsho', 'relb', 'rwri', 'lhip','rhip', 'head']for i, example in enumerate(examples):joint = example[2].Timg_name = example[3][0]joints = dict(zip(joint_ids, joint))img =cv2.imread(image_path+"/"+img_name)img_name = img_name.split(".")[0]imgh, imgw = img.shape[:2]point_dict = {}ps = []head = np.asarray(joints['reye']) + \np.asarray(joints['leye']) + \np.asarray(joints['nose'])head /= 3joints['head'] = head.tolist()for name in available:#joint_pos.append(joints[name])point = joints[name]point_dict[name] = [point[0]/imgw, point[1]/imgh,2.0]ps.append([int(point[0]), int(point[1])])x, y, w, h = cv2.boundingRect(np.array([ps]))x = (x+w/2)/imgwy = (y+h/2)/imghw = (w+20)/imgwh = (h+20)/imghwith open(os.path.join(save_path, img_name + ".txt"), "w") as f:f.write(str(0) + " " + str(x) + " " + str(y) + " " + str(w) + " " + str(h))cv2.rectangle(img, (int(x * imgw - w * imgw / 2), int(y * imgh - h * imgh / 2)),(int(x * imgw + w * imgw / 2), int(y * imgh + h * imgh / 2)),(0, 0, 255), 5)c =0for i in point_dict:p = point_dict[i]f.write(" " + str(p[0]) + " " + str(p[1]) + " " + str(p[2]))cv2.circle(img, (int(p[0] * imgw), int(p[1] * imgh)), 5, colors[c],thickness=-1)f.write("\n")c = c+1# img_txt.write(str(point_dict))f.close()# num += 1# 若不想看图片中关键点的位置是否准确,请注释掉后面两行# cv2.imshow("img", img)# cv2.waitKey()cv2.imwrite(save_path1 + "/" + img_name + ".jpg", img)

完整代码:https://github.com/ziyaoma/detect-pose

参考:LSP数据集与MPII数据集标签转txt文件(字典形式储存)_mpii标注文件修改成txt-CSDN博客

https://github.com/Fangyh09/PoseDatasets

这篇关于记录::关键点检测数据转化和可视化LSP、FLIC转yolov8-pose的txt的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/623229

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

MySQL中删除重复数据SQL的三种写法

《MySQL中删除重复数据SQL的三种写法》:本文主要介绍MySQL中删除重复数据SQL的三种写法,文中通过代码示例讲解的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下... 目录方法一:使用 left join + 子查询删除重复数据(推荐)方法二:创建临时表(需分多步执行,逻辑清晰,但会

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Servlet中配置和使用过滤器的步骤记录

《Servlet中配置和使用过滤器的步骤记录》:本文主要介绍在Servlet中配置和使用过滤器的方法,包括创建过滤器类、配置过滤器以及在Web应用中使用过滤器等步骤,文中通过代码介绍的非常详细,需... 目录创建过滤器类配置过滤器使用过滤器总结在Servlet中配置和使用过滤器主要包括创建过滤器类、配置过滤

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines