电动汽车转子油冷电机

2024-01-19 15:12

本文主要是介绍电动汽车转子油冷电机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

需要新能源全车间对标请联:shbinzer  拆车邦

今天Gary给大家带来一篇关于电动汽车转子油冷电机方案的文献解读,文章详细介绍了油路设计中各个变量的优化过程并对各个方案进行了对比分析。本文对其设计过程进行解读,希望对大家解决实际问题有所帮助。

一、油路走向

首先,来看一下我们要探讨的电机油冷的整体方案,其油路的走向如下图所示:

c0f4f1a2859ec99a7b0627a1211920f7.jpeg

这个方案与传统方案相对,特殊的地方在于,在一般的定子水冷方案的基础上,增加了转子的冷却油路。冷却油从前盖流进机壳,在定子铁芯形成环形油路,由后盖汇集到转子内部,从转子内部到达前盖的出口。

二、电机油冷结构

为实现以上油路,电机前后盖和机壳的结构如下图所示:

cd0fc7cafd4c2bf20f5c6d385137e467.jpeg

值得一提的是电机机壳的轴向油道采用了多个进出口的方式,这样油道的流阻比较小。

另外,对转子来说,采用了分两段加工后再焊接的形式(这个加工工艺可参考另一篇外文,介绍的是轴的摩擦焊工艺,需要的朋友可以加文末我的微信),转子的结构如下图:

3bbde57bfc3c80b45c1526e87cb778e0.jpeg

三、仿真迭代过程

仿真基本过程如下图所示:

81d3314dd1c8d4411db6e08e88cc9def.jpeg

仿真的过程就基于温度场和电磁场的双向耦合分析,首先给出初始温度,再通过电磁仿真计算在这一温度下的损耗,再将损耗传递给温度场分析。如此反复迭代,直到稳态。为缩短仿真时间,电磁场仿真采用2D数模,温度场仿真采用3D数模,关于转子和定子相对空气间隙的换热系数参考经验值。

四、实际测量验证

测量电机不同位置和实际温度值,与仿真值进行了对比分析。以2300rpm,7.38Nm工作状态为例,可以得到仿真误差在10%以内。具体的数值见下图:

3c99e1ff2845961476baac44e80514d0.jpeg

五、电机的优化

1、机壳冷却油道

三种不同形式下的油道如下图:

f78632fd2c58607854c8a5f68d433740.jpeg

分析在不同流量的条件下,三种结构的定子和转子温度如下图:

99e7bd0efe96f8c2ad15ea6ea82cee65.jpeg

由图表可知,我们可以根据系统流量和温度要求,综合考虑后,确定机壳油道结构。显而易见的是,从a到b,在冷却油流量较低时, 绕组的冷却效果得到了明显提高,而c相对于b,冷却效果提高不明显;在冷却油流量较高时,c的冷却效果无论是绕组还是转子都不如b,即使其结构更加复杂。这表明在我们设计机壳油道时,需要结合冷却油的流量来设计,从而找到一个流量和通道设计相匹配的最佳冷却方案。

2、转子进出油口

转子的进油口和出油口的角度是可选的变量,其变量可设置为如下图所示角度。

724b81afe7abec6b818e53c490d2e6f6.jpeg

通过对几组特定角度值进行仿真,可得出如下图所示结果。 

bb7635eafd16e93642419588c6a23bed.jpeg

对比可知,第三组组合为最优解。

六、测试方法

实际样机在定子机壳上开了六个油冷通道。如下图:

b73874bd367164a293d3ad850f806d6e.jpeg

测量定转子温度,在定子线包、铁芯、机壳上分别放置热敏电阻,转子上无法直接测量,采用标签纸来测定。测量点如下:

c3ea2468ab25fd3cd0efdf434324d0ea.jpeg

试验系统:

bcd51016d32e478325a2e1d5a844805f.jpeg

七、试验结果

三种条件:风冷、单壳体油冷和壳体加轴油冷

结果:

风冷在80分钟后电机温度130℃,而且未达到平衡

单壳体油冷在80分钟后电机温度110℃,达到平衡

壳体加轴油冷在30分钟后电机温度80℃,达到平衡

934f986d31a8508a9dfe4717b0e305fe.jpeg

另外,从时间轴上比较,单壳体油冷与壳体加轴油冷在10分钟之前,冷却效果大体相同,30分钟之后,两者冷却效果有明显区别,并且这种区别的趋势在扩大。

ba234d7eebfa5adc761b4a397b5897b0.jpeg

此方案与常见的单壳体冷却和喷油方案的冷却效果对比,如下表:

7d47910b82e951856b8857934011fb9c.jpeg

八、总结

此方案与传统的风冷相比,线圈温度下降了50%,与单壳体油冷方案相比,线圈温度下降了38%,故是一种有效的提高电机冷却能力的方案。

afdce9eebeaf94cc73b8ca3d9b32aa59.jpeg

04c1b30f8dca8d69e9498a6f7c4ff5d2.jpeg

这篇关于电动汽车转子油冷电机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622811

相关文章

【电机控制】数字滤波算法(持续更新)

文章目录 前言1. 数字低通滤波 前言 各种数字滤波原理,离散化公式及代码。 1. 数字低通滤波 滤波器公式 一阶低通滤波器的输出 y [ n ] y[n] y[n] 可以通过以下公式计算得到: y [ n ] = α x [ n ] + ( 1 − α ) y [ n − 1 ] y[n] = \alpha x[n] + (1 - \alpha) y[n-1]

基于PI控制算法的异步感应电机转速控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述        基于PI控制算法的异步感应电机转速控制系统simulink建模与仿真。PI控制器是一种经典的线性控制器,它通过将控制量的比例部分和积分部分相结合来实现对系统输出的调节。比例部分用于快速响应偏差,而积分部分则用于消除稳态误差。 2.系统仿真结果 (完整程

【科普知识】一体化电机掉电后“位置精准复位“机制与规律

在工业自动化、机器人技术及精密控制领域,电机作为核心执行元件,其稳定运行和精确控制对于整个系统的性能至关重要。 然而,电机在运行过程中可能会遭遇突然断电的情况,这会导致电机失去驱动力并停止在当前位置,甚至在某些情况下发生位置偏移。 因此,电机掉电后的位置恢复机制成为了一个关键技术问题。本文将探讨电机掉电后位置恢复的原理机制,以期为相关领域的研究与应用提供参考。 一、电机掉电后的位置偏移现象

工业三相电机的反转

反转旋转:简单方法 对于只需要单向运转的电机,直接的解决方案是反转来自电源的两根物理输入线。实际上,这正是逆变器和反向启动器内部发生的事情,但它都隐藏在“引擎盖下”。 但这究竟是如何实现的呢?为什么反转几根电线会对大型电机产生如此大的影响呢? 请务必参考电机制造商的说明,确保正确反转。并非所有电机都有相同的要求,但大多数三相电机都遵循相同的原理运行。 三相电机基础知识 在本文中,我们将仅

开绕组永磁电机驱动系统零序电流抑制策略研究(7)——基于零矢量重新分布的120°矢量解耦/中间六边形调制零序电流抑制策略

1.前言 很久没有更新过开绕组电机的仿真了。在一年前发了开绕组的各种调制策略。开绕组电机最常见的两种解耦调制就是120°矢量解耦/中间六边形调制和180°矢量解耦/最大六边形调制。 我当时想的是,180°解耦调制/最大六边形调制的电压利用率最高,所以我就一直用这个调制方式。但是近年来做开绕组电机的基本都是华科的老师,而他们都采用了120°调制/中间六边形调制。 我之前是做了120°解耦调

国产电动汽车与特斯拉差多少?

最近硬件再发明出了“电动汽车的春天来了?”后,大家反应积极,何不仔细对比一下当红的特斯拉和已经商用的国产电动汽车。在油价上涨、环保要求提高等因素推动下,电动车的商用窗口已经打开;还有限购背景下的专门车牌通道、政府补贴的诱惑。 如一位同行所言,几年前假如你没见过纯电动汽车,或许是因为他们多半在各种严苛环境的测试区域行走,现在他们要现身了。 但电动汽车有多少人能接受?是个问题。国内用户对电动

电动汽车行业智能充电桩语音提示IC方案

随着电动车市场的日益壮大,共享汽车也纷纷采用电动车这类新能源,预示着充电桩市场将迎来巨大的发展潜力。智能充电桩,其功能与加油站的加油机颇为相似,可灵活安装于公共建筑如商场、停车场以及居民小区内,为用户提供便捷的充电服务。用户只需通过刷卡,便可在充电桩的人机交互界面上轻松选择充电方式、设定充电时间,并打印费用数据,同时,充电桩的显示屏还会实时展示充电量、费用及充电时间等详细信息。 那么,为充电桩增

LabVIEW电机多次调用

在LabVIEW中,为实现对多个电机的独立控制,工程师可以采用可重入VI、动态VI调用、多任务结构或面向对象编程等方法。每种方法都有其优点和适用场景,选择合适的方法能有效提升系统的性能和可维护性。 在LabVIEW中,如果需要多次调用控制电机的VI,并且需要针对每个电机进行单独控制,可以采用以下几种方法: 1. 创建可重入的(Reentrant)VI 方法:将电机控制的VI设置为可

【电机控制】有感FOC之霍尔自学习

文章目录 前言1 霍尔自学习的目的2 霍尔自学习的流程3 定位角度时的设置 前言 PMSM(永磁同步电机)的FOC控制算法中,无论是有感还是无感,对于位置(电角度)的确定都是其中重要而不可或缺的一环。本文介绍有感FOC的前期准备工作,对霍尔自学习的过程和作用进行简要说明。 1 霍尔自学习的目的 霍尔自学习有两个主要目的: 第一,获取霍尔状态的顺序,并与转动方向对应。 第二

聊聊2相步进电机的细分算法与细分步进角

2 相步进电机是一种常见的电机类型,广泛应用于各种自动化设备中。细分算法是提高步进电机精度和运行平稳性的重要手段。 一、细分算法的原理 细分算法的基本思想是将一个整步分成若干个微步,通过控制电机绕组中的电流大小和方向,使电机的转子在每个微步中转动一个微小的角度。这样可以大大提高电机的分辨率和精度,同时也可以降低电机的振动和噪声。 细分算法通常采用正弦波电流控制方式,即通过控制电机绕组中的电流