查看神经网络中间层特征矩阵及卷积核参数

2024-01-19 12:20

本文主要是介绍查看神经网络中间层特征矩阵及卷积核参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

可视化feature maps以及kernel weights,使用alexnet模型进行演示。

1. 查看中间层特征矩阵

alexnet模型,修改了向前传播

import torch
from torch import nn
from torch.nn import functional as F# 对花图像数据进行分类
class AlexNet(nn.Module):def __init__(self,num_classes=1000,init_weights=False, *args, **kwargs) -> None:super().__init__(*args, **kwargs)self.conv1 = nn.Conv2d(3,48,11,4,2)self.pool1 = nn.MaxPool2d(3,2)self.conv2 = nn.Conv2d(48,128,5,padding=2)self.pool2 = nn.MaxPool2d(3,2)self.conv3 = nn.Conv2d(128,192,3,padding=1)self.conv4 = nn.Conv2d(192,192,3,padding=1)self.conv5 = nn.Conv2d(192,128,3,padding=1)self.pool3 = nn.MaxPool2d(3,2)self.fc1 = nn.Linear(128*6*6,2048)self.fc2 = nn.Linear(2048,2048)self.fc3 = nn.Linear(2048,num_classes)# 是否进行初始化# 其实我们并不需要对其进行初始化,因为在pytorch中,对我们对卷积及全连接层,自动使用了凯明初始化方法进行了初始化if init_weights:self._initialize_weights()def forward(self,x):outputs = []  # 定义一个列表,返回我们要查看的哪一层的输出特征矩阵x = self.conv1(x)outputs.append(x)x = self.pool1(F.relu(x,inplace=True))x = self.conv2(x)outputs.append(x)x = self.pool2(F.relu(x,inplace=True))x = self.conv3(x)outputs.append(x)x = F.relu(x,inplace=True)x = F.relu(self.conv4(x),inplace=True)x = self.pool3(F.relu(self.conv5(x),inplace=True))x = x.view(-1,128*6*6)x = F.dropout(x,p=0.5)x = F.relu(self.fc1(x),inplace=True)x = F.dropout(x,p=0.5)x = F.relu(self.fc2(x),inplace=True)x = self.fc3(x)# for name,module in self.named_children():#     x = module(x)#     if name == ["conv1","conv2","conv3"]:#         outputs.append(x)return outputs# 初始化权重def _initialize_weights(self):for m in self.modules():if isinstance(m,nn.Conv2d):# 凯明初始化 - 何凯明nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m,nn.Linear):nn.init.normal_(m.weight, 0,0.01)  # 使用正态分布给权重赋值进行初始化nn.init.constant_(m.bias,0)

拿到向前传播的结果,对特征图进行可视化,这里,我们使用训练好的模型,直接加载模型参数。

注意,要使用与训练时相同的数据预处理。

import matplotlib.pyplot as plt
from torchvision import transforms
import alexnet_model
import torch
from PIL import Image
import numpy as np
from alexnet_model import AlexNet# AlexNet 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
# 实例化模型
model = AlexNet(num_classes=5)
weights = torch.load("./alexnet_weight_20.pth", map_location="cpu")
model.load_state_dict(weights)image = Image.open("./images/yjx.jpg")
image = transform(image)
image = image.unsqueeze(0)with torch.no_grad():output = model(image)for feature_map in output:# (N,C,W,H) -> (C,W,H)im = np.squeeze(feature_map.detach().numpy())# (C,W,H) -> (W,H,C)im = np.transpose(im,[1,2,0])plt.figure()# 展示当前层的前12个通道for i in range(12):ax = plt.subplot(3,4,i+1) # i+1: 每个图的索引plt.imshow(im[:,:,i],cmap='gray')plt.show()

结果:

在这里插入图片描述


2. 查看卷积核参数

import matplotlib.pyplot as plt
import numpy as np
import torchfrom AlexNet.model import AlexNet# 实例化模型
model = AlexNet(num_classes=5)
weights = torch.load("./alexnet_weight_20.pth", map_location="cpu")
model.load_state_dict(weights)weights_keys = model.state_dict().keys()
for key in weights_keys:if "num_batches_tracked" in key:continueweight_t = model.state_dict()[key].numpy()weight_mean = weight_t.mean()weight_std = weight_t.std(ddof=1)weight_min = weight_t.min()weight_max = weight_t.max()print("mean is {}, std is {}, min is {}, max is {}".format(weight_mean, weight_std, weight_min, weight_max))weight_vec = np.reshape(weight_t,[-1])plt.hist(weight_vec,bins=50)plt.title(key)plt.show()

结果:

在这里插入图片描述

这篇关于查看神经网络中间层特征矩阵及卷积核参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622416

相关文章

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

SpringBoot利用@Validated注解优雅实现参数校验

《SpringBoot利用@Validated注解优雅实现参数校验》在开发Web应用时,用户输入的合法性校验是保障系统稳定性的基础,​SpringBoot的@Validated注解提供了一种更优雅的解... 目录​一、为什么需要参数校验二、Validated 的核心用法​1. 基础校验2. php分组校验3

mysql如何查看当前连接数

《mysql如何查看当前连接数》:本文主要介绍mysql如何查看当前连接数问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql查看当前连接数查看mysql数据库允许最大连接数总结mysql查看当前连接数查看当前连接数SHOW STATUS LIKE

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

基于@RequestParam注解之Spring MVC参数绑定的利器

《基于@RequestParam注解之SpringMVC参数绑定的利器》:本文主要介绍基于@RequestParam注解之SpringMVC参数绑定的利器,具有很好的参考价值,希望对大家有所帮助... 目录@RequestParam注解:Spring MVC参数绑定的利器什么是@RequestParam?@

查看Oracle数据库中UNDO表空间的使用情况(最新推荐)

《查看Oracle数据库中UNDO表空间的使用情况(最新推荐)》Oracle数据库中查看UNDO表空间使用情况的4种方法:DBA_TABLESPACES和DBA_DATA_FILES提供基本信息,V$... 目录1. 通过 DBjavascriptA_TABLESPACES 和 DBA_DATA_FILES