基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型

2024-01-19 11:20

本文主要是介绍基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较-CSDN博客

风速预测(一)数据集介绍和预处理-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客

CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-LSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(Transformer - BiLSTM+ ARIMA)-CSDN博客

 CEEMDAN +组合预测模型(CNN-Transformer + ARIMA)-CSDN博客

多特征变量序列预测(一)——CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(二)——CNN-LSTM-Attention风速预测模型-CSDN博客

多特征变量序列预测(三)——CNN-Transformer风速预测模型-CSDN博客

多特征变量序列预测(四)Transformer-BiLSTM风速预测模型-CSDN博客

多特征变量序列预测(五) CEEMDAN+CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(六) CEEMDAN+CNN-Transformer风速预测模型-CSDN博客

前言

本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与基于麻雀优化算法的SSA-BiLSTM-Attention预测模型,以提高时间序列数据的预测性能。该方法的核心是使用CEEMDAN算法对时间序列进行分解,接着利用麻雀优化算法对BiLSTM-Attention模型进行优化,通过对分解后的数据进行建模,来实现精准预测。

风速数据集的详细介绍可以参考下文:

风速预测(一)数据集介绍和预处理-CSDN博客

1 风速数据CEEMDAN分解与可视化

1.1 导入数据

1.2 CEEMDAN分解

根据分解结果看,CEEMDAN一共分解出11个分量,来作为SSA-BiLSTM-Attention模型的输入进行预测

2 数据集制作与预处理

划分数据集,按照8:2划分训练集和测试集

3 麻雀优化算法
 

3.1 麻雀优化算法介绍

麻雀优化算法(Sparrow Optimization Algorithm,简称SOA)是一种基于自然界麻雀行为特点的优化算法,它模拟了麻雀在觅食、迁徙和社交等行为中的优化策略。该算法在解决多种优化问题方面展现出了良好的性能。

麻雀优化算法的基本思想是通过模拟麻雀的觅食行为,不断优化搜索空间中的解。算法的过程可以分为觅食行为、迁徙行为和社交行为三个阶段。

1. 觅食行为(Foraging Behavior):麻雀在觅食时会选择距离较近且具有较高适应度的食物源。在算法中,解空间中的每个个体被看作是一个食物源,具有适应度评价值。麻雀通过选择适应度较高的个体来寻找更优的解。

2. 迁徙行为(Migration Behavior):当麻雀在一个食物源周围搜索一段时间后,如果没有找到更优的解,它们会选择离开当前食物源,前往其他食物源继续寻找。在算法中,个体之间的位置信息会发生变化,以模拟麻雀的迁徙行为。

3. 社交行为(Social Behavior):麻雀在觅食时会通过与其他麻雀的交流来获取更多的信息,从而提高自己的觅食效率。在算法中,个体之间通过交换信息来改善自身的解,并且更新解空间中的最优解。

3.2 基于Python的麻雀优化算法实现

3.3 麻雀优化算法-超参数寻优过程

麻雀优化算法具有简单易实现、全局寻优能力和自适应性等特点,适用于解决组合优化问题。我们通过麻雀优化算法来进行BiLSTM-Attention模型的超参数寻优。

通过设置合适的种群规模和优化迭代次数,我们在给定的超参数范围内,搜索出最优的参数。

4 基于CEEMADN的 SSA-BiLSTM-Attention 模型预测

4.1 定义SSA-BiLSTM-Attention预测模型

注意:

  • 输入维度为11, 代表CEEMDAN分解的11个分量

  • 输入形状为 torch.Size([64, 7, 11])

  •  batch_size=64,  7代表序列长度(滑动窗口取值)

4.2 设置参数,训练模型

50个epoch,MSE 为0.005526,SSA-BiLSTM-Attention预测效果良好,适当调整模型参数,还可以进一步提高模型预测表现。

注意调整参数:

  • 可以修改麻雀优化算法的种群规模和优化迭代次数;

  • 调整BiLSTM层数和维度数的参数搜索范围,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

保存训练结果和预测数据

4.3 模型评估

分量预测,结果可视化

由分量预测结果可见,11个分量在SSA-BiLSTM-Attention预测模型下拟合效果好,预测精度高。

模型整体评估:

代码、数据如下:

这篇关于基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622263

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行