本文主要是介绍大数据:应用于计量学的新技巧 - 第三章 一般为预测需要做的考量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
第三章 一般为预测需要做的考量
一般来说,预测的目标是使用那些样本外的输入值也能够达到良好的预测结果。从我们的经验上看,对于样本内的输入值来说,建立一个能用的“预测机”十分简单,但不幸的是对于样本外的基本都没法用。举个小例子,n个线性独立回归因子可以完美的拟合n个观察值,但是对于预测样本外的输入值来说就完了。机器学习的专家们称这个现象叫做“过度拟合问题”,当然他们对这个问题也有一些解决方法。
首先,由于简单模型对于样本外内的输入值有更好的预测效果,机器学习专家决定使用不同的方式来“惩罚”那些过度复杂的模型。在机器学习的世界里,这个方法被称之为“规范化”。之后我们会举几个例子。经济学家同样喜欢简单的模型,使用的原因也和机器学习专家一样,但并没有很明确的量化由复杂性带来的开销。
其次,一般来说我们会根据训练,测试以及验证这三个机器学习的步骤来将数据集分割成3份,用用来训练的数据来估计模型,用用来验证的数据来选择模型,然后用用来测试的数据来验证所选择的模型究竟如何。(通常来说验证和测验集合是放在一起的)
其三,如果我们有一个明确的量化值来测量模型的复杂度,我们可以将其变成一个参数用来调整优化预测结果。通常我们会使用称为k-折交叉验证的方法来选择一个良好的调整参数。
1. 将数据分成k份大概相同大小的子集,并将它们标记为 s=1,...,k,第一个子集定义为s=1。
2. 选一个值作为调整参数。
3. 用数据子集中的k-1个子集来训练模型。
4. 用剩下的那个子集s来验证并计算出相对的损失。
5. 如果s=k,停止;否则s=s+1然后回到第2步。
一般来说k值通常是10,5或者是样本大小减1,做完交叉验证后,你会得到一系列k的值以及对应的损失,然后就可以去选择一个合适的k值作为调整参数。甚至来说,如果根本不需要调整参数,使用这样的交叉验证的方法得到拟合优度的测量值还是很重要的,毕竟用样本外的输入值来测试要比样本内的输入值更有意义,当学者就要谨慎为之嘛。
在机器学期中会经常用到这种训练-测试周期以及交叉验证的方法,在我看来,他们更应当用在经济学当中,特别是当我们需要处理大规模的数据的时候。这些年来,经济学家总是用“我们收到的数据少的都不够训练的”这样的借口使用样本内的输入值来进行拟合优度的测量,但是现在拿到大数据不像以前那么难了,没有必要说还是使用相同的数据集来同事对模型进行训练以及测试。特别对于大数据来说,交叉验证的方法是一个很有用途的验证法,相比在经济学中常用的测量方式来说,这种方法得到的测量更加的现实,更加的有意义。
这篇关于大数据:应用于计量学的新技巧 - 第三章 一般为预测需要做的考量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!