【转载】Swift里的CAP理论和NWR策略应用

2024-01-19 02:18

本文主要是介绍【转载】Swift里的CAP理论和NWR策略应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:http://blog.sina.com.cn/s/blog_57f61b490101a8ca.html

最近有人讨论到swift副本数是否能够调整,3副本成本过高,如果改成2副本怎么样?多聊了几句以后发现不少人可能都是望文生义,简单的认为副本数只是多一个少一个Copy的问题,并不了解背后的理论依据。所以想写个简单的介绍,普及分布式系统设计的一些基础知识点。这个是按傻瓜版写的,已经知道的同学请自动无视。

  不同于传统的集中式存储,对于分布式存储系统来说,因为自身的复杂性,副本数并非简单拍脑门而来,需要找到理论支撑,它的依据实际上是来自于CAP理论和基于其上的NWR策略。

  CAP 理论是由UC Berkerly的Eric Brewer(没错,他也叫Eric,哈哈)在2000年提出的,当时是一个猜想,2年后被MIT的两个家伙证明为理论,很快被互联网大企业们(Ebay,Twitter,Amazon等)接受和拥护,到如今已经13年,成为了分布式系统设计的经典理论之一。

  CAP的主要思想是“C,A, P三者不可得兼,舍一而取二者也”。这就像找对象,如果你想找到一个真实存在的女朋友,你必须先明白没有人是完美的,分布式系统也这样。

  C = 一致性 (Consistency) :保证得到的都是完成状态的数据,否则直接失败。

原文是A service that is consistent operates fully or not at all,要么完整得到一个原子性操作,要么闹太套(哈哈,开个玩笑)。这个要求像个专一的妹纸,一次只和一个人谈,没什么牵扯不清的中间状态。意味着系统给出去的数据必须保证是原子操作的合格品,否则直接不给,坚决不能给半成品。你不会拿到一张被另外一个请求画了一半的图,或者是更新了上半段的说明书。

  A = 可用性 (Availability) :在容忍的响应时间内,每个操作总是能够返回,不会出现所谓in_flight IO,总是能及时响应。这意味着一个好脾气的妹纸,永远一分钟内反应。就是不想理你,她也会马上回答“我不想理你”而不是玩冷战,问她在吗?半天没声音。系统总能在指定时间段(例如15秒)内给你反馈,要么给你数据,要么告诉你失败鸟,不会告诉你正在处理中,然后把你撂一边自己下班了。

  P = 分区容忍性 (Partition Tolerance) :能够保证系统是分区的。

  原文是这样No set of failures less than total network failure is allowed to cause the system to respond incorrectly,比较难理解,简单的解释一下这是个反证,除非整个分布式系统所在的网络都挂掉,只要还有分区就能给出正确响应。这意味着一个会到处出没的妹纸,她可能在家,可能在office,可能在外面happy,但只要任何一个地方能上网,她就能给你反馈。(有人说那多个地方同时出现算什么,那只能说明你很花心,同时和好几个妹纸交往,她们互相之间还不反感,能够配合互为备份)这第三种特质比较罕见也比较难搞,这大概也就是跨分区(设备)的系统吸引人的地方吧。

  CAP定理告诉我们,同时具有这三种特质的妹纸和分布式系统都是不存在的,你必须在其中做取舍。

  Amazon于是写了个论文,描述了一下如果取舍的具体策略,具体到副本数怎么设定,这就是NWR。

  N = 副本数

  W = 一次成功的写操作必须完成的写副本数

  R = 一次成功的读操作需要读的副本数(是的,随便读一个副本是不行的,你必须读到一定数量的副本,再相互比较取最新的数据)

策略来说就有具体的公式可供运算,有两个:

 

  W > N/2

  W + R > N 

我们结合Swift的设定,N=3,W=2,R=2(or 1),来看看这两个公式是什么意义。

分布式系统通常用来处理大并发请求的应用,很多请求大家同时来,有一堆在读,也有一堆想写。

假设有一个数据拥有三副本,每个副本已经同步好,原来的值都是A

我们看看如果不需要满足公式让W小于3/2,也就是W=1的情况下会出现什么问题,W=1,意味着每个写的请求只要写完一个副本即可成功返回。

假设两个进程同时来更新这份数据,进程W1要把值改写成C,进程W2要把值改写成B,那就有可能出现下图的情形,两个进程各拿到一个副本改写,都认为自己的写操作是成功的,结果却留给系统三个不同的副本,这样就出现数据副本不一致的问题。

Swift里的CAP理论和NWR策略应用

  所以公式W> N/2, 实际上变成了一个写的锁,意味着只有写了过半数副本的才算写成功,拿不到的就返回失败,解决了竞争的问题。如下图,W1的会话成功,W2的会话就返回失败。

Swift里的CAP理论和NWR策略应用

  W> N/2,同时意味着不需要把所有的副本都写完,未完成的留给系统自己后台慢慢同步,那这个时候问题就来了,一个新的会话过来读数据的时候,分配到的副本有可能是没来得及更新的。这时候R1读回去的就是过时的数据B,而非最新的数据C

Swift里的CAP理论和NWR策略应用

 第2个公式变形下就是R> N-W,R=2就避免正好倒霉读到没更新的那一个。这样读回去C和B两个数据,再比较后取最新的C。所以W+R> N 能够保证每个读的请求至少读到一份最新的数据,

Swift里的CAP理论和NWR策略应用 


    所以你也许已经琢磨出来,这两个公式更加强调一致性,在可用性上是有所保留的。

当然NWR还可能取其他值,不同的取值代表了不同的倾向。如果设定N=3, W=3, R=1,那么强调的是一致性,写数据的时候一定要把所有副本都刷新,杜绝中间状态,这样一致性得到很好保证;如果N=3, W=1, R=1,那强调的是可用性,这种情况下一致性是被牺牲掉了,所以上面两个保证一致性的公式在这种情况下就不再适用。之所以可用性提高是因为读和写都放低了要求,只要完成一个副本即可,这样完成时间降低,响应速度是更快的。

N=3, W=2, R=2是一种折中的策略。其实Amazon的Dynamo就是采用的这个参数,据说Swift是照搬S3的。 

  所以回到Swift的副本设定来看,swift的NWR值是可调的,有两种配置,一种是标准的N3W2R2,但是实际上你也可以使用N3W2R1,这个更实用点。在这种配置下,虽然一个数据拥有三副本,但是容错上读写是不一样的。网络断线,硬盘故障等意外造成一个副本失效时, 系统仍然可读可写,但两个副本失效时,受影响的这部分数据系统就变成只读,无法再写了。

CAP理论和NWR策略在大规模系统下是比较合理的,除了被用来设计分布式存储之外,也用来设计分布式数据库,比如很热的NOSQL。另外,这个理论问世已经不短的时间,也经常看到有人发文要挑战他,也有一些吐槽等等,那个是另外的话题,这里就不再继续了。

最近我一个朋友在网上购物,遇到一件有意思的事,某电商有个特价抢购,是个手机移动电源,他就很happy下了单,结果第2天送来了两瓶酱油。回头看订单详情,明明还是移动电源。再看促销,原来的促销已经变成了酱油。我们可以用前面的理论模拟下问题是如何产生的。朋友在查看商品的时候,他的这个会话,假设读到的库存数据是1,意思就是有货,就放到购物车里了。但同时估计也有很多人在查询,读到的数据都是1,大家都认为有货。除了我朋友,至少还有一个人也下了单,下单就需要后台需要将这个库存数据减去1,常见的逻辑应该是改写库存成功才能生成订单。如果设定的W是1,那么两个会话就会有机会都认为自己成功,两个订单同时生成,但货只有一个了,导致问题出现。

至于如何变成酱油的,我不太想猜测,这件事本身实在是太搞笑了,我想起他拆开包裹的样子就想笑哈哈哈。

这篇关于【转载】Swift里的CAP理论和NWR策略应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/620994

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识