各种加法器的比对分析与Verilog实现(2)

2024-01-18 21:10

本文主要是介绍各种加法器的比对分析与Verilog实现(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      本文将介绍Kogge-Stone加法器和brent-kung加法器的原理,在下一篇博客中我将用Verilog进行实现。

目录

1. 并行前缀加法器(Parallel-Prefix Adder, PPA) 

2. Kogge-Stone加法器原理

3. brent-kung加法器原理


1. 并行前缀加法器(Parallel-Prefix Adder, PPA

       为了减少AND门的深度,PPA对CLA进行了进一步优化。不过PPA和CLA进行的计算流程大致一致,只是在计算进位Ci的时候进行了充分的并行优化。在PPA的设计中,主要有两种结构组件:processing component 和 buffer component,两种结构的构造和逻辑意义如下:

        目前的多种PPA变体,其主要设计思路是在加法器范围、电路深度、节点输出数量和整体布线四点上做出均衡。常见的变体有下面三种(这里的结构图是递推的意思):

Sklansky
Kogge-Stone
Beaumont-Smith

2. Kogge-Stone加法器原理

参考文献:

A Parallel Algorithm for the Efficient Solutionof a General Class of Recurrence Equations

       Kogge-Stone加法器是利用Peter M. Kogge和Harold S.Stone于1972年提出的一种并行算法生成的一种树形加法器。

       下面是我的一部分理解:

       使用CLA的计算流程:

       可以把它抽象为下面的数学问题:

       为解决如上问题,论文中定义了下式:

       从而可以把问题转化为:

       因此递推公式如下:

        Q(i,1)和Q(2i,i+1)可以独立计算,Q(i,1)和Q(2i,i+1)又可以单独分解独立计算,每个层级都可以独立计算,因此加快了运算速度。

       然后就出现一张神奇的递推结构图(x8的计算图例):

       以及X1至X8的计算步骤、系数与公式表:

       因此,可以比较快速的得出各项进位Ci:

       对于C1-C4等的生成,其算式如下:

        这就是之前这张图的来源(就是把论文那张递推结构图倒过来)

3. brent-kung加法器原理

       brent-kung加法器是树形结构,由Richard P.Brent 和 H.T.Kung教授于上世纪80年代提出。设计的思想类似于超前进位加法器,但是brent和kung教授充分的考虑了开销和电路结构本身的拓扑学特性,针对性的升级了超前进位加法器的性能,使其达到了N比特加法器延迟正比于logN, 面积正比于N的效果。

       Brent-Kung加法器定义了以下运算“o”:

        也就是:

  • 输入p,g,g’,p’,输出g+p.g’
  • 输入p,g,g’,p’,输出p.p’

       可以用归纳出下面这个结论:

       当n=8时,(G8,P8)的计算方法如下图:

       其中白色圈表示数据传递,数据前后没有变化;黑色圈表示上文中定义的“o”操作,其计算示意图如下:

        在T=3时刻G8和P8的计算如下:

        (G8,P8)=(g8,p8)o(g7,p7)o(g6,p6)o(g5,p5)o(g4,p4)o(g3,p3)o(g2,p2)o(g1,p1)

       对于一般问题(Gi,Pi),i=1,2,3,…N的计算,其结构图如下:

       brent-kung加法器主要展示了一种在电路上无法直接减少面积增加速度的情况下,进行数学上的抽象建模并优化结构的思路。二进制可以表示一切函数关系,这是二进制的完备性,因此我们可以把一切电路问题优化为数学问题进而求解,这种一种非常重要的思路。

       从逻辑层数,扇入扇出和布线拥塞度三个方面看该树形加法器,Brent-Kung加法器的拓扑结构经历逻辑层数较多,需要(2logN–1)级,扇入扇出和布线拥塞度较低。

体会:我认为,不论是Kogge-Stone方法还是brent-kung方法,本质上都是在CLA的基础上,对Ci=Gi+Pi·Ci-1这个递推式进行转化,用类似于整体代换的思想,解决CLA中随着i增大,Ci通项表达式复杂度疯狂上升的问题。有点类似于编程里从算法上降低时间复杂度的感觉。但是这必然会造成空间复杂度的上升,在硬件上的体现可能就是布线更加拥堵。

参考链接:

Kogge-Stone加法器原理与设计

Brent-Kung树形加法器原理与设计

求学路上,你我共勉(๑•̀ㅂ•́)و✧

这篇关于各种加法器的比对分析与Verilog实现(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/620264

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动