chisel入门初步1——基4的booth编码的单周期有符号乘法器实现

2024-01-18 13:52

本文主要是介绍chisel入门初步1——基4的booth编码的单周期有符号乘法器实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基4的booth编码乘法器原理说明

基2的booth编码

本质来说就是一个裂项重组,乘法器最重要的设计是改变部分积的数量,另外在考虑有符号数的情况下,最高位符号位有特别的意义。
(注:部分积是指需要最后一起加和的所有部分乘积的项)
下面直接套用其他人图片进行展示,来源如下
https://blog.csdn.net/weixin_42330305/article/details/122868294
在这里插入图片描述
其中 B − 1 = 0 B_{-1}=0 B1=0
可以看到,基2的booth编码并没有改变部分积的数量,在实际运行时,基2的booth编码在某些情况下无法提速,甚至可能降速,所以引入基4的booth编码

基4的booth编码

为应对上面问题,这里引入基4的booth编码,将部分积的数量缩小了一半,大大加快了处理速度,具体如下
图片来源与上面相同
在这里插入图片描述
所以
在这里插入图片描述
其中 B − 1 = 0 B_{-1}=0 B1=0
在实际处理时,为保证形式统一且数组访问时不越界,可以这样处理

b = {B, 0};

通过在末尾拼接一个0,整个式子可以写成下述形式
A ⋅ B = ∑ i = 0 n 2 − 1 ( − 2 ⋅ b 2 i + 2 + b 2 i + 1 + b 2 i ) ⋅ 2 2 i ⋅ A A\cdot B=\sum_{i=0}^{\frac{n}{2}-1} (-2 \cdot b_{2i+2} + b_{2i+1} + b_{2i})\cdot2^{2i}\cdot A AB=i=02n1(2b2i+2+b2i+1+b2i)22iA
可以看出,部分积的数量减少到原来的一半,乘法器速度大大加快

基4的booth编码的单周期有符号乘法器Verilog实现

直接丢出Verilog代码


/*
* 基4的booth编码的单周期有符号乘法器
*/module booth_multiplier_base4 #(parameter DATA_WIDTH = 8       // 数据位宽应该为2的指数
)(  input [DATA_WIDTH-1 : 0] a,  input [DATA_WIDTH-1 : 0] b,  output reg [2*DATA_WIDTH-1 : 0] product,input clk
);  integer i;  reg [2:0] booth_bits [DATA_WIDTH/2-1:0];  reg [DATA_WIDTH:0] b_extended;reg [2*DATA_WIDTH:0] partial_product [DATA_WIDTH/2-1:0];  reg [2*DATA_WIDTH-1:0] a_pos, a_neg, a_extend; always @(posedge clk) begin  b_extended = {b, 1'b0}; // 这里我补了个0,防止索引超出界限a_extend = {{DATA_WIDTH{a[DATA_WIDTH-1]}}, a};    // 符号位扩展 ,之前忘记扩展找了好久a_pos = a_extend;a_neg = ~a_extend + 1'b1;  // 补码运算product = 0;for (i = 0; i < DATA_WIDTH/2; i = i + 1) begin  booth_bits[i] = {b_extended[2*i+2], b_extended[2*i+1], b_extended[2*i]};  case (booth_bits[i])/*$\sum_{i=0}^{\frac{n}{2}-1} (-2 \cdot b_{2i+2} + b_{2i+1} + b_{2i})$  // LaTex{ b(2i+2), b(2i+1), b(2i) } :=000:    0;001:    1;010:    1;011:    2;100:    -2;101:    -1;110:    -1;111:    0;*/  3'b000, 3'b111: partial_product[i] = 9'd0;  3'b001, 3'b010: partial_product[i] = a_pos;3'b011:         partial_product[i] = a_pos << 1;3'b100:         partial_product[i] = a_neg << 1;3'b101, 3'b110: partial_product[i] = a_neg; endcase  endfor (i = 0; i < (DATA_WIDTH/2-1); i = i + 1) beginproduct = product + (partial_product[i] << (2*i)); // Shift and accumulateendend  endmodule

testbench如下

`timescale 1ns/1nsmodule sim_booth_multiplier_base4 ();parameter DATA_WIDTH = 8;    reg [DATA_WIDTH-1:0] a;
reg [DATA_WIDTH-1:0] b;
wire [2*DATA_WIDTH-1:0] product;
reg [2*DATA_WIDTH-1:0] expected_product;
reg test_passed;
reg clk;booth_multiplier_base4 #(.DATA_WIDTH(DATA_WIDTH)) booth_multiplier_base4_0
(.a(a),.b(b),.product(product),.clk(clk)
);initial begin  // 初始化  $display("Time, a, b, Expected Product, Actual Product, Test Result\n");  clk = 0;// 第一个样例  a <= 8'b01111111; // 127  b <= 8'b00000010; // 2  expected_product <= 16'd254; // 254  #10; // 等待一些时间以便观察波形  test_passed = (product == expected_product) ? 1 : 0;  $display("%d, %b, %b, %b, %b, %s\n", $time, a, b, expected_product, product, (test_passed ? "PASSED" : "FAILED"));  // 第二个样例 (注意:在实际八位乘法中这是不可能的,因为会溢出)  // 我们可以故意让它失败,或者用一个能够处理溢出的乘法器  a <= 8'b10000000; // -128 (补码表示)  b <= 8'b10000000; // -128 (补码表示)  // 由于这个乘法实际上会溢出,所以设置expected_product为一个不可能的值  expected_product <= 16'bx0000000000000000; // 'x'表示不关心这些位  #10;  // 这里我们检查乘法器是否设置了溢出标志位(如果有的话),或者检查最高位是否设置正确  // 由于我们没有具体的乘法器实现细节,这里只能做一个假设性的检查  // 假设乘法器在溢出时将最高位设置为1  test_passed = (product == expected_product) ? 1 : 0;  $display("%d, %b, %b, %b, %b, %s (Overflow Expected)\n", $time, a, b, expected_product, product, test_passed ? "PASSED" : "FAILED");  // 第三个样例  a <= 8'b11111111; // -1  b <= 8'b11111111; // -1  expected_product <= 16'b0000000000000001; // 1  #10;  test_passed = (product == expected_product) ? 1 : 0;  $display("%d, %b, %b, %b, %b, %s\n", $time, a, b, expected_product, product, test_passed ? "PASSED" : "FAILED");  // 结束仿真  $finish;  
end  always begin#2;clk = ~clk;
end
endmodule

代码不详细讲了,应该还比较清楚,没有进行性能的优化,仅完成功能的实现

基4的booth编码单周期有符号乘法器chisel实现

和Verilog代码逻辑相同,这里直接撇出来
模块代码

import chisel3._  
import chisel3.util._  class BoothMultiplierBase4(val DATA_WIDTH: Int = 8) extends Module {  val io = IO(new Bundle {  val a = Input(SInt(DATA_WIDTH.W))  // Signed input a  val b = Input(SInt(DATA_WIDTH.W))  // Signed input b  val product = Output(SInt((2 * DATA_WIDTH).W)) // Signed output product  })  val booth_bits = Wire(Vec((DATA_WIDTH / 2), UInt(3.W)))  val partial_products = RegInit(VecInit(Seq.fill(DATA_WIDTH / 2)(0.S((2 * DATA_WIDTH).W))))  // On every positive edge of the clock  val b_extended = io.b << 1.U // Sign-extend b with an extra 0  val a_neg = -io.a                    // Negation of a  val a_pos = io.a                     // Positive of aval regProduct = RegInit(0.S((2 * DATA_WIDTH).W))// Calculate Booth bits  for (i <- 0 until DATA_WIDTH / 2) {  booth_bits(i) := Cat(b_extended(2*i+2), b_extended(2*i+1), b_extended(2*i)) // Calculate partial products based on Booth encoding  partial_products(i) := MuxCase(0.S, Array(  (booth_bits(i) === 0.U || booth_bits(i) === 7.U) -> 0.S,  (booth_bits(i) === 1.U || booth_bits(i) === 2.U)  -> a_pos,  (booth_bits(i) === 3.U) -> (a_pos << 1.U),  (booth_bits(i) === 4.U) -> (a_neg << 1.U),                 // 此处自动进行符号位的扩展,下同(booth_bits(i) === 5.U || booth_bits(i) === 6.U) -> a_neg  ))  }  // Accumulate partial products to form the final product  io.product := partial_products.zipWithIndex.map{case (pp, i) => pp << ((2*i).U)}.reduce(_+_)}  /* An object extending App to generate the Verilog code*/
object BoothMultiplierBase4 extends App {(new chisel3.stage.ChiselStage).emitVerilog(new BoothMultiplierBase4(), Array("--target-dir", "./verilog/BoothMultiplier"))
}

测试代码

import org.scalatest.flatspec.AnyFlatSpec  
import scala.util.Random  
import chisel3._  
import chisel3.tester._  // Booth乘法器的测试类  class BoothMultiplierBase4Test extends AnyFlatSpec with ChiselScalatestTester {  behavior of "BoothMultiplierBase4"  it should "multiply signed numbers correctly" in {  for (i <- 0 until 10) {  val a = Random.nextInt(256) - 128 // 生成-128到127之间的随机数  val b = Random.nextInt(256) - 128  test(new BoothMultiplierBase4) { c =>  c.io.a.poke(a.S) // 将随机数a作为有符号数输入  c.io.b.poke(b.S) // 将随机数b作为有符号数输入  c.clock.step(2) // 时钟前进一步以执行乘法  val expectedProduct = a.toLong * b.toLong // 计算预期乘积  val actualProduct = c.io.product.peek().litValue.toLong // 获取实际乘积  /* c: 这是测试环境中BoothMultiplierBase4模块的实例。c.io.product: 这是指向模块输出端口product的引用。peek(): 这是一个Chisel测试方法,用于在不推进时钟的情况下读取端口的当前值。litValue: 这是一个方法,用于从Chisel的Data类型中提取实际的Scala值(在这个例子中是BigInt) */println(s"Iteration: $i, A: $a, B: $b, Expected Product: $expectedProduct, Actual Product: $actualProduct")  assert(actualProduct === expectedProduct, s"Product is incorrect at iteration $i! Expected: $expectedProduct, Actual: $actualProduct")  }  }  }  
}

测试结果

Iteration: 0, A: -70, B: 110, Expected Product: -7700, Actual Product: -7700
o		# 不知道这个o是哪里来的。。。
Iteration: 1, A: 105, B: 104, Expected Product: 10920, Actual Product: 10920
Iteration: 2, A: 69, B: -90, Expected Product: -6210, Actual Product: -6210
Iteration: 3, A: 62, B: -64, Expected Product: -3968, Actual Product: -3968
Iteration: 4, A: -34, B: -104, Expected Product: 3536, Actual Product: 3536
Iteration: 5, A: -49, B: 103, Expected Product: -5047, Actual Product: -5047
Iteration: 6, A: 57, B: 56, Expected Product: 3192, Actual Product: 3192
Iteration: 7, A: 32, B: 22, Expected Product: 704, Actual Product: 704
Iteration: 8, A: -51, B: -101, Expected Product: 5151, Actual Product: 5151
Iteration: 9, A: -94, B: 54, Expected Product: -5076, Actual Product: -5076

这篇关于chisel入门初步1——基4的booth编码的单周期有符号乘法器实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/619202

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一