python数字图像处理基础(七)——直方图均衡化、傅里叶变换

本文主要是介绍python数字图像处理基础(七)——直方图均衡化、傅里叶变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 直方图均衡化
      • 均衡化原理
      • 均衡化效果
      • 标准直方图均衡化
      • 自适应直方图均衡化
    • 傅里叶变换
      • 原理
      • 低通滤波
      • 高通滤波

直方图均衡化

均衡化原理

图像均衡化是一种基本的图像处理技术,通过更新图像直方图的像素强度分布来调整图像的全局对比度。这样做可以使低对比度的区域在输出图像中获得更高的对比度。

简单理解:改变图像对比度,让色彩更丰富,灰度值直方图:瘦高 -> 均衡

本质上,直方图均衡化的工作原理是:

  • 1.计算图像像素强度的直方图
  • 2.均匀展开并分布最频繁的像素值(即直方图中计数最大的像素值)
  • 3.给出累积分布函数(CDF)的线性趋势

在这里插入图片描述

注意到以上直方图有许多峰值,这表明有很多像素被归入到这些各自的bin中。使用直方图均衡化,我们的目标是将这些像素分散到没有太多像素的bin中。

均衡化效果

在这里插入图片描述

注意输入图像的对比度是如何显著提高的,但代价是也提高了输入图像中的噪声的对比度。

这就提出了一个问题:是否有可能在不增加噪声的同时提高图像对比度?
答案是“是的”,你只需要应用自适应直方图均衡化

通过自适应直方图均衡化,我们将输入图像划分为M × N网格。然后我们对网格中的每个单元进行均衡处理,从而获得更高质量的输出图像:

在这里插入图片描述

标准直方图均衡化

OpenCV 包括通过以下两个函数实现基本直方图均衡和自适应直方图均衡:

cv2.equalizeHist
cv2.createCLAHE

应用cv2.equalizeHist()函数非常简单,只需将图像转换为灰度,然后调用cv2.equalizeHist即可:

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
equalized = cv2.equalizeHist(gray)

自适应直方图均衡化

实现自适应直方图均衡化要求:

1.将输入图像转换为灰度/从中提取单个通道
2.使用cv2.createCLAHE实例化CLAHE算法
3.在CLAHE对象上调用.apply()方法来应用直方图均衡化
这比听起来容易得多,只需要几行代码:

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
equalized = clahe.apply(gray)

注意,我们为cv2.createCLAHE提供了两个参数:

  • clipLimit:这是对比度限制的阈值
  • tileGridSize:将输入图像划分为M × N块,然后对每个局部块应用直方图均衡化

傅里叶变换

原理

傅里叶变换常用来分析各种滤波器的特性。可以是用2D离散傅里叶变换分析图像的频域特性。

(个人理解,在图像问题当中,频域是指图像的灰度变化,也就是灰度图像的梯度值,这个和轮廓的原理差不多,灰度值变化剧烈的叫做高频分量,例如边界和噪声。灰度值变化缓慢的称谓低频分量)

实现2D离散傅里叶变换(DFT)的的算法叫做快速傅里叶变换(FFT)。

对图像进行X方向和Y方向的傅里叶变换,会得到图像的频域表示图。

直观理解,一个正弦信号,如果幅度变换很快,可以称之为高频信号,如果变换慢,可以称之为低频信号。在图像中,灰度值变化快的位置,可以称之为高频分量(只变化快而不是次数多),灰度值变化慢的称之为低频分量

图像使用使用二维离散傅里叶变换后得到一个复数矩阵,叫做图像的频谱图。

低通滤波器:只保留低频,会使得图像模糊

高通滤波器:只保留高频,会使得图像细节增强

  • opencv中主要就是从cv2.dftt()cv2.idft(),输入图像需要先转换成np.float32格式:

    img = cv2.imread(‘lena.jpg’, 0)

    img_ float32 = np.float32(img)

    dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)

  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置(故转换后的图像从中心向四周频率增高),可以通过shift变换来实现:

    dft_shift = np.fft.fftshift(dft)

  • cv2.dft()返回的结果是复数矩阵,即双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)

    magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:, :, 0],dft_shift[:, :, 1]))

img = cv2.imread('33.jpg',0)  # 读图
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)  # 傅里叶变换
dft_shift = np.fft.fftshift(dft)  # 平移到中心,结果为双通道(实部,虚部)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))  # 转化为频谱图

理解:通过傅里叶变换,将图像转化为频谱图,而低通滤波和高通滤波则是傅里叶变换的逆变换,即通过对频谱图进行一些操作(保留低频/保留高频),从而达到改变原始图像的效果。

低通滤波

作用:将图像变得平滑,同时也就看起来比较模糊。

做法:利用掩码,把中心部分频率低的保留下来

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./image/img1.jpg', 0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags= cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)rows, cols = img.shape  # 横纵坐标
crow, ccol = int(rows/2), int(cols/2)  # 找到中心位置# 低通滤波制作蒙板
mask = np.zeros((rows, cols, 2), np.uint8)  # 初始化全部像素点数值置为0
mask[crow-30:crow+30, ccol-30:ccol+30] = 1  # 相当于只有中心位置60*60像素点是1,其余全为0# IDFT傅里叶逆变换 即把dft后得到的按频率分布的奇奇怪怪的图(称为频谱图)变为原来imread进来的图
fshift = dft_shift*mask  # 将掩膜和得到的结果结合,即只有中心60*60保留
f_ishift = np.fft.fftshift(fshift)  # 做逆变换,当然要把原来fft左上角移到中间的再移回左上角ifft
img_back = cv2.idft(f_ishift)  # 逆变换,频谱图还原为原图,但还不能看,因为结果是双通道(实部,虚部)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])  # 套公式处理,让图像可看plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()

高通滤波

作用:增强边缘,非边缘部分被过滤

做法:使用一个60×60的矩形窗口进行蒙板操作,去除低频分量,使用函数np.fft.ifftshift将图像中心平移回左上角,然后使用函数 np.ifft2()进行FFT逆变换,将得到的复数结果取绝对值。(DFT的逆变换)

与低通滤波唯一的区别就在蒙版的制作

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./image/img1.jpg', 0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags= cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)rows, cols = img.shape  # 横纵坐标
crow, ccol = int(rows/2), int(cols/2)  # 找到中心位置# 高通滤波制作蒙板
mask = np.ones((rows, cols, 2), np.uint8)  # 初始化全部像素点数值置为1
mask[crow-30:crow+30, ccol-30:ccol+30] = 0  # 相当于只有中心位置60*60像素点是0,其余全为1# IDFT傅里叶逆变换 即把dft后得到的按频率分布的奇奇怪怪的图变为原来imread进来的图
fshift = dft_shift*mask  # 将掩膜和得到的结果结合,即只有中心60*60保留
f_ishift = np.fft.fftshift(fshift)  # 做逆变换,当然要把原来fft左上角移到中间的再移回左上角ifft
img_back = cv2.idft(f_ishift)  # 逆变换,模糊频率图还原为原图,但还不能看,因为结果是双通道(实部,虚部)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])  # 套公式处理,让图像可看plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()

思想:将图像通过傅里叶变换映射到频域中进行操作,往往简单高效,最后再逆变换转化回来就好


这篇关于python数字图像处理基础(七)——直方图均衡化、傅里叶变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/618320

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详