白山云基于StarRocks数据库构建湖仓一体数仓的实践

2024-01-18 00:36

本文主要是介绍白山云基于StarRocks数据库构建湖仓一体数仓的实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

随着每天万亿级别的业务数据流向数据湖,数据湖的弊端也逐渐凸显出来,例如:

  1. 数据入湖时效性差:数据湖主要依赖于离线批量计算,通常不支持实时数据更新,因此无法保证数据的强一致性,造成数据不及时、不准确;
  2. 查询性能差:在传统架构下,数据湖的查询速度较差,小时粒度的数据查询往往需要数分钟才能得到响应,在多个业务方同时执行数据湖查询任务时,查询响应慢的劣势更加明显;
  3. 查询体验差:数据存储在多个地方,在进行联邦分析时需要将数据从数据湖中搬迁到数据仓库平台,这会增加分析链路的长度,同时导致数据的冗余存储。在进行常规查询时,需要熟练查询多种数据库,学习成本极高;
  4. 场景融合不足:数据湖单一组件,无法满足目前的海量数据处理诉求,例如在批处理和流处理等场景下的融合能力有限。

技术选型思考

在旧架构中,数据湖组件选择的是Hudi,查询层使用Hive on Spark进行查询,所有业务方的查询上层封装了Metabase,在Metabase平台上编写Hive SQL,即可通过Spark引擎执行计算,获取数据湖中的计算结果。

这个架构的缺点很明显:

  1. 数据湖和数据仓库是分开的两个东西,没有办法关联查询;
  2. 业务方需要同时掌握SparkSQLMySQL两种能力,学习成本高;
  3. SparkSQL查询效率慢,稳定性差,资源占用高;
  4. Spark引擎在跑Hive SQL时,会偶发触发BUG导致查询失败,需要手工重试才能得到结果,用户体验较差。

白山云大数据团队在寻找新的架构方案时,主要关注以下几个方面:

  1. 在数据查询方面,查询效率、查询体验要显著高于传统的Spark引擎;
  2. 在资源利用上,查询数据使用的CPU和内存要远低于传统的Spark引擎;
  3. 可拓展性高,支持动态扩缩容;
  4. 在学习成本上,传统的Hive SQL相较MySQL语句有较高门槛,如果能兼容MySQL协议来检索数据湖的查询,可以极大降低数据湖的查询门槛。

基于以上需求,大数据团队选择了多个数据湖相关的查询组件,对性能、资源、稳定性等方面进行测试比对,最终选择了StarRocks作为数据湖的查询引擎。

如何实现架构落地

在确定了技术选型后,接下来就要考虑如何平滑地将架构落地:

StarRocks 数据湖专用集群建设

白山云大数据团队有多个数据湖Hudi集群,并且数据湖Hudi组件使用HDFS作为底层存储。StarRocks 如果要连接数据湖,则需要将core-site.xml等配置文件放到conf目录,并且对文件名有强依赖,因此不能做到一个StarRocks集群连接多个HDFS集群。

所以在StarRocks建设时,大数据团队针对每一个Hudi集群都建设了一个单独的StarRocks集群作为查询引擎。在节点选择上,由于Hudi专用的StarRocks集群不存储数据,因此不挂载硬盘。为了提高资源利用率,并减少一些数据传输时网络IO的消耗,大数据团队选择了和HDFS的Data Node节点混合部署。

新旧架构并行运行

在StarRocks集群建设完成后,大数据团队基于以下考虑,选择了新旧架构并行运行的方案,来保障整个架构的平缓更替。

  1. 由于新旧架构并行,可以使用相同的查询语句分别在新旧架构中运行,从而精准得到新旧架构的性能和资源消耗对比;
  2. 有了充足的时间推广新架构,在内部开展新架构的使用培训,并在运行过程中让业务方充分感受到新架构的高性能优势,自主切换到新架构中;
  3. 并行运行期间,如果新架构发生了预期之外的问题导致故障,可以快速回退到旧架构中,保证了线上服务不受影响。

此时的架构如下:

在运行过程中,新架构的优点也集中展露:

  1. 用户无需再学习SparkSQL的语法,只需掌握MySQL协议即可访问两种数据源;
  2. 数据湖和数据仓库的连接更加紧密,通过StarRocks湖上物化视图的功能,数据湖的数据可以将聚合结果存入StarRocks进行物化加速;
  3. 提供了联邦分析能力,由于数据湖和数据仓库都是使用StarRocks进行查询,因此可以实现同一条语句将两种数据源的数据混合计算的联邦查询;
  4. StarRocks在查询Hudi时不论是性能、稳定性还是资源占用方面都有很大的优化;
  5. 一些StarRocks数据仓库写入、查询压力较大的表,可以挪到数据湖中存储,然后继续通过StarRocks对外提供查询,实现业务方无感知的平滑迁移。

我们使用相同的查询语句在不同架构中多次执行,性能对比结果十分明显:在环境内存资源占用上SparkSQL是StarRocks2.8倍,在环境CPU利用上SparkSQL是StarRocks3.78倍;对于SQL内存消耗、SQL CPU消耗时间上SparkSQL也要比StarRocks高出许多;对于SQL首次执行时间,StarRocks要比SparkSQL快近3倍,SQL再次执行时间StarRocks的速度也要比SparkSQL快近6-8倍。

引擎

环境内存

环境CPU

SQL首次执行时间

SQL再次执行时间

SQL内存消耗*时间

SQL CPU消耗*时间

并发问题

稳定性问题

物化视图

存算分离

SparkSQL

720G

242c

90s

42s-77s

32400G*s

10890core*s

单个SQL会拿走所有资源计算,后续SQL排队

如果SQL故障,会将Yarn任务打挂

StarRocks

256G

64c

31s

7s-10s

1742M*s

0.139core*s

支持多个SQL同时运行,无需排队

耽搁故障SQL不会影响服务

支持湖上物化视图,聚合结果自动落到高性能的StarRocks中

支持存算分离动态扩缩容

滚动裁撤旧架构资源

在新旧架构长达数周的并行运行后,新架构的性能、稳定性、资源消耗等方面优势已经体现出来了,此时开始滚动裁撤旧架构的资源,让业务方只能使用StarRocks这一种查询引擎查询Hudi集群。

新数据入湖

在StarRocks作为数据湖的查询引擎得到大范围推广后,下一步的操作就是进一步将湖仓一体的架构体现,将其他StarRocks集群中对延迟要求低或者数据体量大的表写入数据湖。

对于业务方,通过StarRocks进行数据查询的整个流程无需改变,依旧使用MySQL协议查询StarRocks数据库。

带来的价值是什么

  1. 资源节约:我们有多个机房和多套Hudi集群,在全面使用StarRocks替代SparkSQL查询Hudi集群后,资源消耗节省70%;
  2. 查询性能提升:在无并发场景下,查询效率提升3-8倍;在并发执行场景下,查询效率提升10倍以上;
  3. 学习成本降低:旧架构查询数据湖需要掌握HiveSQL语法,新架构只需了解MySQL语法;
  4. 湖仓一体的深入融合:在旧架构中一些无法满足的业务需求可以得到满足,例如量级无法承接的数据可以转存到数据湖中,通过StarRocks集群进行查询;
  5. 联邦分析:通过StarRocks统一数据查询引擎,可以实现跨数据源的联邦分析场景,例如一半在Hudi一半在StarRocks中聚合到一起进行联邦分析。

未来探索方向

在湖仓一体方案稳定运行后,大数据团队针对StarRocks数据库开始了新一步的探索:

统一StarRocks集群:前面提到了目前受限于配置文件问题,一个StarRocks集群只能连接一个Hudi集群。和StarRocks社区沟通后了解到,未来StarRocks 中Catalog的配置不再局限于物理机的配置文件,而是在Catalog的创建语句中动态传入,一旦这个方案上线,就可以实现一个StarRocks集群连接多个HDFS/Hudi集群,甚至可以实现跨Hudi集群的联邦查询。

存算分离探索:StarRocks 3.0正式发布了存算分离CN(Compute Node)节点,未来我们在湖仓一体的StarRocks集群中计划正式引入CN节点,在执行大查询时,快速扩容多个CN节点加速查询,在没有查询时将CN节点释放,减少资源占用。

湖上物化视图探索:StarRocks支持湖上物化视图功能,针对数据湖的数据可以做到原始数据存储在数据湖中,同时聚合结果存储在StarRocks中。当查询条件满足物化结果,可以直接将查询改写到物化视图中,实现极速查询。

更多数据源探索:StarRocks 的Catalog模块除了Hudi等数据湖组件外,在3.1版本正式接入了ES数据库。白山云大数据团队计划构建ES专用的StarRocks集群,来将StarRocks的极速查询能力赋能到更多数据库中。

这篇关于白山云基于StarRocks数据库构建湖仓一体数仓的实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/617646

相关文章

mac安装nvm(node.js)多版本管理实践步骤

《mac安装nvm(node.js)多版本管理实践步骤》:本文主要介绍mac安装nvm(node.js)多版本管理的相关资料,NVM是一个用于管理多个Node.js版本的命令行工具,它允许开发者在... 目录NVM功能简介MAC安装实践一、下载nvm二、安装nvm三、安装node.js总结NVM功能简介N

Spring Boot 3 整合 Spring Cloud Gateway实践过程

《SpringBoot3整合SpringCloudGateway实践过程》本文介绍了如何使用SpringCloudAlibaba2023.0.0.0版本构建一个微服务网关,包括统一路由、限... 目录引子为什么需要微服务网关实践1.统一路由2.限流防刷3.登录鉴权小结引子当前微服务架构已成为中大型系统的标

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

查询SQL Server数据库服务器IP地址的多种有效方法

《查询SQLServer数据库服务器IP地址的多种有效方法》作为数据库管理员或开发人员,了解如何查询SQLServer数据库服务器的IP地址是一项重要技能,本文将介绍几种简单而有效的方法,帮助你轻松... 目录使用T-SQL查询方法1:使用系统函数方法2:使用系统视图使用SQL Server Configu

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表