复现PointNet++(语义分割网络):Windows + PyTorch + S3DIS语义分割 + 代码

2024-01-17 22:36

本文主要是介绍复现PointNet++(语义分割网络):Windows + PyTorch + S3DIS语义分割 + 代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、平台

Windows 10

GPU RTX 3090 + CUDA 11.1 + cudnn 8.9.6

Python 3.9

Torch 1.9.1 + cu111

所用的原始代码:https://github.com/yanx27/Pointnet_Pointnet2_pytorch

二、数据

Stanford3dDataset_v1.2_Aligned_Version

三、代码

分享给有需要的人,代码质量勿喷。

对源代码进行了简化和注释。

分割结果保存成txt,或者利用 laspy 生成点云。

别问为啥在C盘,问就是2T的三星980Pro

3.1 文件组织结构

3.2 数据预处理

3.2.1 run_collect_indoor3d_data.py 生成*.npy文件

改了路径

3.2.2 indoor3d_util.py

改了路径

3.2.3 S3DISDataLoader.py

改了路径

3.3 训练 train_SematicSegmentation.py

# 参考
# https://github.com/yanx27/Pointnet_Pointnet2_pytorch
# 先在Terminal运行:python -m visdom.server
# 再运行本文件import argparse
import os
# import datetime
import logging
import importlib
import shutil
from tqdm import tqdm
import numpy as np
import time
import visdom
import torch
import warnings
warnings.filterwarnings('ignore')from dataset.S3DISDataLoader import S3DISDataset
from PointNet2 import dataProcess# PointNet
from PointNet2.pointnet_sem_seg import get_model as PNss
from PointNet2.pointnet_sem_seg import get_loss as PNloss# PointNet++
from PointNet2.pointnet2_sem_seg import get_model as PN2SS
from PointNet2.pointnet2_sem_seg import get_loss as PN2loss# True为PointNet++
PN2bool = True
# PN2bool = False# 当前文件的路径
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))# 训练输出模型的路径: PointNet
dirModel1 = ROOT_DIR + '/trainModel/pointnet_model'
if not os.path.exists(dirModel1):os.makedirs(dirModel1)
# 训练输出模型的路径
dirModel2 = ROOT_DIR + '/trainModel/PointNet2_model'
if not os.path.exists(dirModel2):os.makedirs(dirModel2)# 日志的路径
pathLog = os.path.join(ROOT_DIR, 'LOG_train.txt')# 数据集的路径
pathDataset = os.path.join(ROOT_DIR, 'dataset/stanford_indoor3d/')# 分类的类别
classNumber = 13
classes = ['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase','board', 'clutter']
class2label = {cls: i for i, cls in enumerate(classes)}
seg_classes = class2label
seg_label_to_cat = {}
for i, cat in enumerate(seg_classes.keys()):seg_label_to_cat[i] = cat# 日志和输出
def log_string(str):logger.info(str)print(str)def inplace_relu(m):classname = m.__class__.__name__if classname.find('ReLU') != -1:m.inplace=Truedef parse_args():parser = argparse.ArgumentParser('Model')parser.add_argument('--pnModel', type=bool, default=True, help='True = PointNet++;False = PointNet')parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]')parser.add_argument('--epoch', default=320, type=int, help='Epoch to run [default: 32]')parser.add_argument('--learning_rate', default=0.001, type=float, help='Initial learning rate [default: 0.001]')parser.add_argument('--GPU', type=str, default='0', help='GPU to use [default: GPU 0]')parser.add_argument('--optimizer', type=str, default='Adam', help='Adam or SGD [default: Adam]')parser.add_argument('--decay_rate', type=float, default=1e-4, help='weight decay [default: 1e-4]')parser.add_argument('--npoint', type=int, default=4096, help='Point Number [default: 4096]')parser.add_argument('--step_size', type=int, default=10, help='Decay step for lr decay [default: every 10 epochs]')parser.add_argument('--lr_decay', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')parser.add_argument('--test_area', type=int, default=5, help='Which area to use for test, option: 1-6 [default: 5]')return parser.parse_args()if __name__ == '__main__':# python -m visdom.servervisdomTL = visdom.Visdom()visdomTLwindow = visdomTL.line([0], [0], opts=dict(title='train_loss'))visdomVL = visdom.Visdom()visdomVLwindow = visdomVL.line([0], [0], opts=dict(title='validate_loss'))visdomTVL = visdom.Visdom(env='PointNet++')# region 创建日志文件logger = logging.getLogger("train")logger.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')file_handler = logging.FileHandler(pathLog)file_handler.setLevel(logging.INFO)file_handler.setFormatter(formatter)logger.addHandler(file_handler)#endregion#region 超参数args = parse_args()args.pnModel = PN2boollog_string('------------ hyper-parameter ------------')log_string(args)# 指定GPUos.environ["CUDA_VISIBLE_DEVICES"] = args.GPUpointNumber = args.npointbatchSize = args.batch_size#endregion# region dataset# train datatrainData = S3DISDataset(split='train',data_root=pathDataset, num_point=pointNumber,test_area=args.test_area, block_size=1.0, sample_rate=1.0, transform=None)trainDataLoader = torch.utils.data.DataLoader(trainData, batch_size=batchSize, shuffle=True, num_workers=0,pin_memory=True, drop_last=True,worker_init_fn=lambda x: np.random.seed(x + int(time.time())))# Validation datatestData = S3DISDataset(split='test',data_root=pathDataset, num_point=pointNumber,test_area=args.test_area, block_size=1.0, sample_rate=1.0, transform=None)testDataLoader = torch.utils.data.DataLoader(testData, batch_size=batchSize, shuffle=False, num_workers=0,pin_memory=True, drop_last=True)log_string("The number of training data is: %d" % len(trainData))log_string("The number of validation data is: %d" % len(testData))weights = torch.Tensor(trainData.labelweights).cuda()#endregion# region loading model:使用预训练模型或新训练modelSS = ''criterion = ''if PN2bool:modelSS = PN2SS(classNumber).cuda()criterion = PN2loss().cuda()modelSS.apply(inplace_relu)else:modelSS = PNss(classNumber).cuda()criterion = PNloss().cuda()modelSS.apply(inplace_relu)# 权重初始化def weights_init(m):classname = m.__class__.__name__if classname.find('Conv2d') != -1:torch.nn.init.xavier_normal_(m.weight.data)torch.nn.init.constant_(m.bias.data, 0.0)elif classname.find('Linear') != -1:torch.nn.init.xavier_normal_(m.weight.data)torch.nn.init.constant_(m.bias.data, 0.0)try:path_premodel = ''if PN2bool:path_premodel = os.path.join(dirModel2, 'best_model_S3DIS.pth')else:path_premodel = os.path.join(dirModel1, 'best_model_S3DIS.pth')checkpoint = torch.load(path_premodel)start_epoch = checkpoint['epoch']# print('pretrain epoch = '+str(start_epoch))modelSS.load_state_dict(checkpoint['model_state_dict'])log_string('!!!!!!!!!! Use pretrain model')except:log_string('...... starting new training ......')start_epoch = 0modelSS = modelSS.apply(weights_init)#endregion# start_epoch = 0# modelSS = modelSS.apply(weights_init)#region 训练的参数和选项if args.optimizer == 'Adam':optimizer = torch.optim.Adam(modelSS.parameters(),lr=args.learning_rate,betas=(0.9, 0.999),eps=1e-08,weight_decay=args.decay_rate)else:optimizer = torch.optim.SGD(modelSS.parameters(), lr=args.learning_rate, momentum=0.9)def bn_momentum_adjust(m, momentum):if isinstance(m, torch.nn.BatchNorm2d) or isinstance(m, torch.nn.BatchNorm1d):m.momentum = momentumLEARNING_RATE_CLIP = 1e-5MOMENTUM_ORIGINAL = 0.1MOMENTUM_DECCAY = 0.5MOMENTUM_DECCAY_STEP = args.step_sizeglobal_epoch = 0best_iou = 0#endregionfor epoch in range(start_epoch, args.epoch):# region Train on chopped sceneslog_string('****** Epoch %d (%d/%s) ******' % (global_epoch + 1, epoch + 1, args.epoch))lr = max(args.learning_rate * (args.lr_decay ** (epoch // args.step_size)), LEARNING_RATE_CLIP)log_string('Learning rate:%f' % lr)for param_group in optimizer.param_groups:param_group['lr'] = lrmomentum = MOMENTUM_ORIGINAL * (MOMENTUM_DECCAY ** (epoch // MOMENTUM_DECCAY_STEP))if momentum < 0.01:momentum = 0.01log_string('BN momentum updated to: %f' % momentum)modelSS = modelSS.apply(lambda x: bn_momentum_adjust(x, momentum))modelSS = modelSS.train()#endregion# region 训练num_batches = len(trainDataLoader)total_correct = 0total_seen = 0loss_sum = 0for i, (points, target) in tqdm(enumerate(trainDataLoader), total=len(trainDataLoader), smoothing=0.9):# 梯度归零optimizer.zero_grad()# xyzLpoints = points.data.numpy() # ndarray = bs,4096,9(xyz rgb nxnynz)points[:, :, :3] = dataProcess.rotate_point_cloud_z(points[:, :, :3]) ## 数据处理的操作points = torch.Tensor(points) # tensor = bs,4096,9points, target = points.float().cuda(), target.long().cuda()points = points.transpose(2, 1) # tensor = bs,9,4096# 预测结果seg_pred, trans_feat = modelSS(points) # tensor = bs,4096,13  # tensor = bs,512,16seg_pred = seg_pred.contiguous().view(-1, classNumber) # tensor = (bs*4096=)点数量,13# 真实标签batch_label = target.view(-1, 1)[:, 0].cpu().data.numpy() # ndarray = (bs*4096=)点数量target = target.view(-1, 1)[:, 0] # tensor = (bs*4096=)点数量# lossloss = criterion(seg_pred, target, trans_feat, weights)loss.backward()# 优化器来更新模型的参数optimizer.step()pred_choice = seg_pred.cpu().data.max(1)[1].numpy() # ndarray = (bs*4096=)点数量correct = np.sum(pred_choice == batch_label) # 预测正确的点数量total_correct += correcttotal_seen += (batchSize * pointNumber)loss_sum += losslog_string('Training mean loss: %f' % (loss_sum / num_batches))log_string('Training accuracy: %f' % (total_correct / float(total_seen)))# drawtrainLoss = (loss_sum.item()) / num_batchesvisdomTL.line([trainLoss], [epoch+1], win=visdomTLwindow, update='append')#endregion# region 保存模型if epoch % 1 == 0:modelpath=''if PN2bool:modelpath = os.path.join(dirModel2, 'model' + str(epoch + 1) + '_S3DIS.pth')else:modelpath = os.path.join(dirModel1, 'model' + str(epoch + 1) + '_S3DIS.pth')state = {'epoch': epoch,'model_state_dict': modelSS.state_dict(),'optimizer_state_dict': optimizer.state_dict(),}torch.save(state, modelpath)logger.info('Save model...'+modelpath)#endregion# region Evaluate on chopped sceneswith torch.no_grad():num_batches = len(testDataLoader)total_correct = 0total_seen = 0loss_sum = 0labelweights = np.zeros(classNumber)total_seen_class = [0 for _ in range(classNumber)]total_correct_class = [0 for _ in range(classNumber)]total_iou_deno_class = [0 for _ in range(classNumber)]modelSS = modelSS.eval()log_string('****** Epoch Evaluation %d (%d/%s) ******' % (global_epoch + 1, epoch + 1, args.epoch))for i, (points, target) in tqdm(enumerate(testDataLoader), total=len(testDataLoader), smoothing=0.9):points = points.data.numpy() # ndarray = bs,4096,9points = torch.Tensor(points) # tensor = bs,4096,9points, target = points.float().cuda(), target.long().cuda() # tensor = bs,4096,9 # tensor = bs,4096points = points.transpose(2, 1) # tensor = bs,9,4096seg_pred, trans_feat = modelSS(points) # tensor = bs,4096,13 # tensor = bs,512,16pred_val = seg_pred.contiguous().cpu().data.numpy() # ndarray = bs,4096,13seg_pred = seg_pred.contiguous().view(-1, classNumber) # tensor = bs*4096,13batch_label = target.cpu().data.numpy() # ndarray = bs,4096target = target.view(-1, 1)[:, 0] # tensor = bs*4096loss = criterion(seg_pred, target, trans_feat, weights)loss_sum += losspred_val = np.argmax(pred_val, 2) # ndarray = bs,4096correct = np.sum((pred_val == batch_label))total_correct += correcttotal_seen += (batchSize * pointNumber)tmp, _ = np.histogram(batch_label, range(classNumber + 1))labelweights += tmpfor l in range(classNumber):total_seen_class[l] += np.sum((batch_label == l))total_correct_class[l] += np.sum((pred_val == l) & (batch_label == l))total_iou_deno_class[l] += np.sum(((pred_val == l) | (batch_label == l)))labelweights = labelweights.astype(np.float32) / np.sum(labelweights.astype(np.float32))mIoU = np.mean(np.array(total_correct_class) / (np.array(total_iou_deno_class, dtype=np.float64) + 1e-6))log_string('eval mean loss: %f' % (loss_sum / float(num_batches)))log_string('eval point avg class IoU: %f' % (mIoU))log_string('eval point accuracy: %f' % (total_correct / float(total_seen)))log_string('eval point avg class acc: %f' % (np.mean(np.array(total_correct_class) / (np.array(total_seen_class, dtype=np.float64) + 1e-6))))iou_per_class_str = '------- IoU --------\n'for l in range(classNumber):iou_per_class_str += 'class %s weight: %.3f, IoU: %.3f \n' % (seg_label_to_cat[l] + ' ' * (14 - len(seg_label_to_cat[l])), labelweights[l - 1],total_correct_class[l] / float(total_iou_deno_class[l]))log_string(iou_per_class_str)log_string('Eval mean loss: %f' % (loss_sum / num_batches))log_string('Eval accuracy: %f' % (total_correct / float(total_seen)))# drawvalLoss = (loss_sum.item()) / num_batchesvisdomVL.line([valLoss], [epoch+1], win=visdomVLwindow, update='append')# region 根据 mIoU确定最佳模型if mIoU >= best_iou:best_iou = mIoUbestmodelpath = ''if PN2bool:bestmodelpath = os.path.join(dirModel2, 'best_model_S3DIS.pth')else:bestmodelpath = os.path.join(dirModel1, 'best_model_S3DIS.pth')state = {'epoch': epoch,'class_avg_iou': mIoU,'model_state_dict': modelSS.state_dict(),'optimizer_state_dict': optimizer.state_dict(),}torch.save(state, bestmodelpath)logger.info('Save best model......'+bestmodelpath)log_string('Best mIoU: %f' % best_iou)#endregion#endregionglobal_epoch += 1# drawvisdomTVL.line(X=[epoch+1], Y=[trainLoss],name="train loss", win='line', update='append',opts=dict(showlegend=True, markers=False,title='PointNet++ train validate loss',xlabel='epoch', ylabel='loss'))visdomTVL.line(X=[epoch+1], Y=[valLoss], name="train loss", win='line', update='append')log_string('-------------------------------------------------\n\n')

3.4 预测测试 test_SematicSegmentation.py

# 参考
# https://github.com/yanx27/Pointnet_Pointnet2_pytorchimport argparse
import sys
import os
import numpy as np
import logging
from pathlib import Path
import importlib
from tqdm import tqdm
import torch
import warnings
warnings.filterwarnings('ignore')from dataset.S3DISDataLoader import ScannetDatasetWholeScene
from dataset.indoor3d_util import g_label2color# PointNet
from PointNet2.pointnet_sem_seg import get_model as PNss
# PointNet++
from PointNet2.pointnet2_sem_seg import get_model as PN2SSPN2bool = True
# PN2bool = False# region 函数:投票;日志输出;保存结果为las。
# 投票决定结果
def add_vote(vote_label_pool, point_idx, pred_label, weight):B = pred_label.shape[0]N = pred_label.shape[1]for b in range(B):for n in range(N):if weight[b, n] != 0 and not np.isinf(weight[b, n]):vote_label_pool[int(point_idx[b, n]), int(pred_label[b, n])] += 1return vote_label_pool# 日志
def log_string(str):logger.info(str)print(str)# save to LAS
import laspy
def SaveResultLAS(newLasPath, point_np, rgb_np, label1, label2):# datanewx = point_np[:, 0]newy = point_np[:, 1]newz = point_np[:, 2]newred = rgb_np[:, 0]newgreen = rgb_np[:, 1]newblue = rgb_np[:, 2]newclassification = label1newuserdata = label2minx = min(newx)miny = min(newy)minz = min(newz)# create a new headernewheader = laspy.LasHeader(point_format=3, version="1.2")newheader.scales = np.array([0.0001, 0.0001, 0.0001])newheader.offsets = np.array([minx, miny, minz])newheader.add_extra_dim(laspy.ExtraBytesParams(name="Classification", type=np.uint8))newheader.add_extra_dim(laspy.ExtraBytesParams(name="UserData", type=np.uint8))# create a Lasnewlas = laspy.LasData(newheader)newlas.x = newxnewlas.y = newynewlas.z = newznewlas.red = newrednewlas.green = newgreennewlas.blue = newbluenewlas.Classification = newclassificationnewlas.UserData = newuserdata# writenewlas.write(newLasPath)# 超参数
def parse_args():parser = argparse.ArgumentParser('Model')parser.add_argument('--pnModel', type=bool, default=True, help='True = PointNet++;False = PointNet')parser.add_argument('--batch_size', type=int, default=32, help='batch size in testing [default: 32]')parser.add_argument('--GPU', type=str, default='0', help='specify GPU device')parser.add_argument('--num_point', type=int, default=4096, help='point number [default: 4096]')parser.add_argument('--test_area', type=int, default=5, help='area for testing, option: 1-6 [default: 5]')parser.add_argument('--num_votes', type=int, default=1,help='aggregate segmentation scores with voting [default: 1]')return parser.parse_args()#endregion# 当前文件的路径
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))# 模型的路径
pathTrainModel = os.path.join(ROOT_DIR, 'trainModel/pointnet_model')
if PN2bool:pathTrainModel = os.path.join(ROOT_DIR, 'trainModel/PointNet2_model')# 结果路径
visual_dir = ROOT_DIR + '/testResultPN/'
if PN2bool:visual_dir = ROOT_DIR + '/testResultPN2/'
visual_dir = Path(visual_dir)
visual_dir.mkdir(exist_ok=True)# 日志的路径
pathLog = os.path.join(ROOT_DIR, 'LOG_test_eval.txt')# 数据集的路径
pathDataset = os.path.join(ROOT_DIR, 'dataset/stanford_indoor3d/')# 分割类别排序
classNumber = 13
classes = ['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase','board', 'clutter']
class2label = {cls: i for i, cls in enumerate(classes)}
seg_classes = class2label
seg_label_to_cat = {}
for i, cat in enumerate(seg_classes.keys()):seg_label_to_cat[i] = catif __name__ == '__main__':#region LOG infologger = logging.getLogger("test_eval")logger.setLevel(logging.INFO) #日志级别:DEBUG, INFO, WARNING, ERROR, 和 CRITICALfile_handler = logging.FileHandler(pathLog)file_handler.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')file_handler.setFormatter(formatter)logger.addHandler(file_handler)#endregion#region 超参数args = parse_args()args.pnModel = PN2boollog_string('--- hyper-parameter ---')log_string(args)os.environ["CUDA_VISIBLE_DEVICES"] = args.GPUbatchSize = args.batch_sizepointNumber = args.num_pointtestArea = args.test_areavoteNumber = args.num_votes#endregion#region ---------- 加载语义分割的模型 ----------log_string("---------- Loading sematic segmentation model ----------")ssModel = ''if PN2bool:ssModel = PN2SS(classNumber).cuda()else:ssModel = PNss(classNumber).cuda()path_model = os.path.join(pathTrainModel, 'best_model_S3DIS.pth')checkpoint = torch.load(path_model)ssModel.load_state_dict(checkpoint['model_state_dict'])ssModel = ssModel.eval()#endregion# 模型推断(inference)或评估(evaluation)阶段,不需要计算梯度,而且关闭梯度计算可以显著减少内存占用,加速计算。log_string('--- Evaluation whole scene')with torch.no_grad():# IOU 结果total_seen_class = [0 for _ in range(classNumber)]total_correct_class = [0 for _ in range(classNumber)]total_iou_deno_class = [0 for _ in range(classNumber)]# 测试区域的所有文件testDataset = ScannetDatasetWholeScene(pathDataset, split='test', test_area=testArea, block_points=pointNumber)scene_id_name = testDataset.file_listscene_id_name = [x[:-4] for x in scene_id_name] # 名称(无扩展名)testCount = len(scene_id_name)testCount = 1# 遍历需要预测的物体for batch_idx in range(testCount):log_string("Inference [%d/%d] %s ..." % (batch_idx + 1, testCount, scene_id_name[batch_idx]))# 数据whole_scene_data = testDataset.scene_points_list[batch_idx]# 真值whole_scene_label = testDataset.semantic_labels_list[batch_idx]whole_scene_labelR = np.reshape(whole_scene_label, (whole_scene_label.size, 1))# 预测标签vote_label_pool = np.zeros((whole_scene_label.shape[0], classNumber))# 同一物体多次预测for _ in tqdm(range(voteNumber), total=voteNumber):scene_data, scene_label, scene_smpw, scene_point_index = testDataset[batch_idx]num_blocks = scene_data.shape[0]s_batch_num = (num_blocks + batchSize - 1) // batchSizebatch_data = np.zeros((batchSize, pointNumber, 9))batch_label = np.zeros((batchSize, pointNumber))batch_point_index = np.zeros((batchSize, pointNumber))batch_smpw = np.zeros((batchSize, pointNumber))for sbatch in range(s_batch_num):start_idx = sbatch * batchSizeend_idx = min((sbatch + 1) * batchSize, num_blocks)real_batch_size = end_idx - start_idxbatch_data[0:real_batch_size, ...] = scene_data[start_idx:end_idx, ...]batch_label[0:real_batch_size, ...] = scene_label[start_idx:end_idx, ...]batch_point_index[0:real_batch_size, ...] = scene_point_index[start_idx:end_idx, ...]batch_smpw[0:real_batch_size, ...] = scene_smpw[start_idx:end_idx, ...]batch_data[:, :, 3:6] /= 1.0torch_data = torch.Tensor(batch_data)torch_data = torch_data.float().cuda()torch_data = torch_data.transpose(2, 1)seg_pred, _ = ssModel(torch_data)batch_pred_label = seg_pred.contiguous().cpu().data.max(2)[1].numpy()# 投票产生预测标签vote_label_pool = add_vote(vote_label_pool, batch_point_index[0:real_batch_size, ...],batch_pred_label[0:real_batch_size, ...],batch_smpw[0:real_batch_size, ...])# region  保存预测的结果# 预测标签pred_label = np.argmax(vote_label_pool, 1)pred_labelR = np.reshape(pred_label, (pred_label.size, 1))# 点云-真值-预测标签pcrgb_ll = np.hstack((whole_scene_data, whole_scene_labelR, pred_labelR))# ---------- 保存成 txt ----------pathTXT = os.path.join(visual_dir, scene_id_name[batch_idx] + '.txt')np.savetxt(pathTXT, pcrgb_ll, fmt='%f', delimiter='\t')log_string('save:' + pathTXT)# ---------- 保存成 las ----------pathLAS = os.path.join(visual_dir, scene_id_name[batch_idx] + '.las')SaveResultLAS(pathLAS, pcrgb_ll[:,0:3], pcrgb_ll[:,3:6], pcrgb_ll[:,6], pcrgb_ll[:,7])log_string('save:' + pathLAS)# endregion# IOU 临时结果total_seen_class_tmp = [0 for _ in range(classNumber)]total_correct_class_tmp = [0 for _ in range(classNumber)]total_iou_deno_class_tmp = [0 for _ in range(classNumber)]for l in range(classNumber):total_seen_class_tmp[l] += np.sum((whole_scene_label == l))total_correct_class_tmp[l] += np.sum((pred_label == l) & (whole_scene_label == l))total_iou_deno_class_tmp[l] += np.sum(((pred_label == l) | (whole_scene_label == l)))total_seen_class[l] += total_seen_class_tmp[l]total_correct_class[l] += total_correct_class_tmp[l]total_iou_deno_class[l] += total_iou_deno_class_tmp[l]iou_map = np.array(total_correct_class_tmp) / (np.array(total_iou_deno_class_tmp, dtype=np.float64) + 1e-6)print(iou_map)arr = np.array(total_seen_class_tmp)tmp_iou = np.mean(iou_map[arr != 0])log_string('Mean IoU of %s: %.4f' % (scene_id_name[batch_idx], tmp_iou))IoU = np.array(total_correct_class) / (np.array(total_iou_deno_class, dtype=np.float64) + 1e-6)iou_per_class_str = '----- IoU -----\n'for l in range(classNumber):iou_per_class_str += 'class %s, IoU: %.3f \n' % (seg_label_to_cat[l] + ' ' * (14 - len(seg_label_to_cat[l])),total_correct_class[l] / float(total_iou_deno_class[l]))log_string(iou_per_class_str)log_string('eval point avg class IoU: %f' % np.mean(IoU))log_string('eval whole scene point avg class acc: %f' % (np.mean(np.array(total_correct_class) / (np.array(total_seen_class, dtype=np.float64) + 1e-6))))log_string('eval whole scene point accuracy: %f' % (np.sum(total_correct_class) / float(np.sum(total_seen_class) + 1e-6)))log_string('--------------------------------------\n\n')

这篇关于复现PointNet++(语义分割网络):Windows + PyTorch + S3DIS语义分割 + 代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/617412

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Windows设置nginx启动端口的方法

《Windows设置nginx启动端口的方法》在服务器配置与开发过程中,nginx作为一款高效的HTTP和反向代理服务器,被广泛应用,而在Windows系统中,合理设置nginx的启动端口,是确保其正... 目录一、为什么要设置 nginx 启动端口二、设置步骤三、常见问题及解决一、为什么要设置 nginx

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法