VC++中使用OpenCV对原图像中的四边形区域做透视变换

2024-01-17 14:52

本文主要是介绍VC++中使用OpenCV对原图像中的四边形区域做透视变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VC++中使用OpenCV对原图像中的四边形区域做透视变换

最近闲着跟着油管博主murtazahassan,学习了一下LEARN OPENCV C++ in 4 HOURS | Including 3x Projects | Computer Vision,对应的Github源代码地址为:Learn-OpenCV-cpp-in-4-Hours

视频里面讲到到原图中的扑克牌四个顶点标记画圆,并且将扑克牌K做透视变换后摆正重新显示,资源图像文件cards.png下载地址为:https://github.com/murtazahassan/Learn-OpenCV-cpp-in-4-Hours/tree/main/Resources
cards.png
cards.png

什么是透视变换

从名称中可以清楚地看出,透视变换与视点的变化相关。这种类型的转换不保留平行度、长度和角度。但它们确实保留了共线性和关联性。这意味着即使在变换之后直线仍将保持直线。

一般来说,透视变换可以表示为:
透视变换的数学形式
上面是透视变换的数学形式,说白了就是对图像中的某个区域做处理。
这里,(x’,y’)是变换点,而(x,y)是输入点。变换矩阵 (M) 可以看作是以下的组合:
透视变换点
对于仿射变换,投影向量等于0。因此,仿射变换可以被认为是透视变换的特例。

由于变换矩阵(M)由8个常数(自由度)定义,因此为了找到这个矩阵,我们首先在输入图像中选择4个点,然后根据用途将这4个点映射到未知输出图像中的所需位置-case(这样我们将有 8 个方程和 8 个未知数,并且可以很容易地求解)。

一旦计算出变换矩阵,我们就将透视变换应用于整个输入图像以获得最终的变换图像。让我们看看如何使用 OpenCV 来做到这一点。
对图形做透视变换

对扑克牌K做透视变换

OpenCV中的透视变换相关函数getPerspectiveTransformwarpPerspective

透视变换(Perspective Transformation)是将成像投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。如图1,通过透视变换ABC变换到A’B’C’。透视变换是计算图像学和线性代数中的一个常用概念。
在视角转换中,我们可以改变给定图像或视频的视角,以便更好地洞察所需信息。在透视变换中,我们需要提供图像上想要通过改变透视来收集信息的点。我们还需要提供要在其中显示图像的点。然后,我们从给定的两组点获得透视变换并将其与原始图像包裹起来。

我们使用 getPerspectiveTransform, 然后使用 warpPerspective 函数,其中 getPerspectiveTransform它将 4 对对应点作为输入并输出变换矩阵,计算出变换矩阵 (M) 后,将其传递给 warpPerspective() 函数,该函数将透视变换应用于图像。

getPerspectiveTransform的函数有两种重载形式,其中一个函数原型如下:
getPerspectiveTransform函数原型1
getPerspectiveTransform重载函数原型2为:
getPerspectiveTransform函数原型2
warpPerspective 函数原型为:
warpPerspective函数原型

首先使用Windows电脑自带默认的画图工具打开cards.png原图,通过移动鼠标到扑克牌K的左上、右上、左下、右下角,在左下角即可查看图像某点的像素坐标,如下图所示:

卡片K的左上角坐标
可以看到K的左上角坐标为:{529, 144}
用同样的方法,依次获取K的右上、左下、右下角坐标,分别为:{771,190}、{405,395}、{674,457}

实现代码

1、根据原图,以及卡片K的位置,获取对应的透视变换矩阵
2、 对原图中的卡片K根据透视变化矩阵进行转换,得到目标图像imgWarp
3、在原图K的四个顶点位置处画一个圆,半径为10像素,颜色为红色
4、显示原图和目标图像K
我们要将扑克牌K进行透视变换摆正,类似下图的转换,以获得图像的自上而下的“鸟瞰图”。:
将某个四边形摆正,做透视变换

实现代码如下:

#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>using namespace cv;
using namespace std;///  Warp Images  //int main()
{string path = "Resources/cards.jpg";Mat img = imread(path);	// 读取原图Mat matrix, imgWarp;float w = 250, h = 350;	// 目标图像的宽度和高度Point2f src[4] = { {529,144},{771,190},{405,395},{674,457} };	// 扑克牌K的四个顶点坐标,分别为左上、右上、左下、右下角坐标Point2f dst[4] = { {0.0f,0.0f},{w,0.0f},{0.0f,h},{w,h} };		// 目标输出图像imgWarp的四个顶点坐标matrix = getPerspectiveTransform(src, dst);	// 根据原图和目标图,获取对应透视变换的转换矩阵warpPerspective(img, imgWarp, matrix, Point(w, h));	// 对原图中的卡片K根据透视变化矩阵进行转换,得到目标图像imgWarp// 在原图K的四个顶点位置处画一个圆,半径为10像素,颜色为红色for (int i = 0; i < 4; i++){circle(img, src[i], 10, Scalar(0, 0, 255), FILLED);}imshow("Image", img);			// 显示原图imshow("Image Warp", imgWarp);	// 显示目标图像KwaitKey(0); // 永久等待直到用户按下键盘中的键,则退出程序return 0;
}

运行结果

在VS2017中运行结果如下图所示:
显示卡片K

对原图中的扑克片K、J、9、Q依次做透视变化并输出

接下来,我们参照上面扑克牌K的处理方法,可以依次对原图中的扑克牌J、9、Q做类似的处理,代码如下图所示:

#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>using namespace cv;
using namespace std;///  Warp Images  //int main()
{string path = "Resources/cards.jpg";Mat img = imread(path);Mat matrix, imgWarpK;Mat matrixJ, imgWarpJ;Mat matrix9, imgWarp9;Mat matrixQ, imgWarpQ;float w = 250, h = 350;	// 目标卡片显示的宽度和高度// 1.处理卡片K// 分别对应扑克牌K的左上、右上、左下、右下角的坐标Point2f src[4] = { {529,144},{771,190},{405,395},{674,457} };	// 源图像中K卡片对应的四边形顶点的坐标。Point2f dst[4] = { {0.0f,0.0f},{w,0.0f},{0.0f,h},{w,h} };		// 目标图像中K卡片对应的四边形顶点的坐标。// 获取透视变换矩阵matrix = getPerspectiveTransform(src, dst);warpPerspective(img, imgWarpK, matrix, Point(w, h));// 在原图K的四个顶点处画圆for (int i = 0; i < 4; i++){circle(img, src[i], 10, Scalar(0, 0, 255), FILLED);}// 2.处理卡片J// 分别对应扑克牌J的左上、右上、左下、右下角的坐标Point2f srcOfJCard[4] = { {776, 108}, {1018, 85}, {849, 358}, {1116, 331} };Point2f destOfJCard[4] = { {0.0f, 0.0f}, {w, 0.0f}, {0.0f, h}, {w, h} };// 获取卡片J的透视变化矩阵matrixJ = getPerspectiveTransform(srcOfJCard, destOfJCard);warpPerspective(img, imgWarpJ, matrixJ, Point(w, h));// 在原图J的四个顶点画圆for (int i = 0; i < 4; i++) {circle(img, srcOfJCard[i], 10, Scalar(255, 0, 0), FILLED);}// 3.处理卡片9// 分别对应扑克牌9的左上、右上、左下、右下角的坐标Point2f srcOf9Card[4] = { {743, 383}, {1023, 438}, {646, 710}, {962, 781} };Point2f destOf9Card[4] = { {0.0f, 0.0f}, {w, 0.0f}, {0.0f, h}, {w, h} };// 获取卡片9的透视变化矩阵matrix9 = getPerspectiveTransform(srcOf9Card, destOf9Card);warpPerspective(img, imgWarp9, matrix9, Point(w, h));// 在原图9的四个顶点画圆for (int i = 0; i < 4; i++) {circle(img, srcOf9Card[i], 10, Scalar(0, 255, 0), FILLED);}// 4.处理卡片Q// 分别对应扑克牌Q的左上、右上、左下、右下角的坐标Point2f srcOfQCard[4] = { {64, 326}, {339, 279}, {91, 636}, {401, 573} };Point2f destOfQCard[4] = { {0.0f, 0.0f}, {w, 0.0f}, {0.0f, h}, {w, h} };// 获取卡片Q的透视变化矩阵matrixQ = getPerspectiveTransform(srcOfQCard, destOfQCard);warpPerspective(img, imgWarpQ, matrixQ, Point(w, h));// 在原图Q的四个顶点画圆for (int i = 0; i < 4; i++) {circle(img, srcOfQCard[i], 10, Scalar(0, 255, 0), FILLED);}imshow("Image", img);			// 显示原图imshow("Warp K", imgWarpK);		// 显示经透视变化后的卡片K,宽度为250,高度为350imshow("Warp J", imgWarpJ);		// 显示经透视变化后的卡片J,宽度为250,高度为350imshow("Warp 9", imgWarp9);		// 显示经透视变化后的卡片9,宽度为250,高度为350imshow("Warp Q", imgWarpQ);     // 显示经透视变化后的卡片Q,宽度为250,高度为350waitKey(0);	// 无限期的等待键盘输入return 0;
}

对应的运行结果如下图所示:
对4个卡片做透视变换

参考资料

  • Perspective Transformation – Python OpenCV
  • TAG ARCHIVES: CV2.GETPERSPECTIVETRANSFORM()
  • LEARN OPENCV C++ in 4 HOURS | Including 3x Projects | Computer Vision
  • murtazahassan/Learn-OpenCV-cpp-in-4-Hours
  • OpenCV官网
  • OpenCV-Get Started
  • OpenCV Github仓库源代码
  • OpenCV tutorial
  • Warp Images
  • https://docs.opencv.org/4.x/da/d54/group__imgproc__transform.html

这篇关于VC++中使用OpenCV对原图像中的四边形区域做透视变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616391

相关文章

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤