KMeans算法在RFM模型(用户分层模型)上的应用

2024-01-17 12:20

本文主要是介绍KMeans算法在RFM模型(用户分层模型)上的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KMeans在RFM模型上的应用

RFM模型到底是个啥,建议先参考百度百科以及知乎的解释。
KMeans算法又是个啥,一言以蔽之:无监督学习的聚类算法(也就是俗话讲的物以类聚,人以群分)。
废话不多说,开始上手

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
data = pd.read_excel('./consumption_data.xls', index_col='Id')
data.head()

解释下这个数据集:字段R表示最近一次消费(Recency),字段F表示消费频率(Frequency),字段M表示消费金额(Monetary)
- 字段R:最近一次消费指上一次购买的时间——用户上一次是什么时候下的单、用户上一次是什么时候订购的服务,或在线下门店中用户上一次进店购买是什么时候。
- 字段F:消费频率指的是顾客在限定的期间内所购买的次数。一般而言,最常购买的用户,也是满意度/忠诚度最高的顾客,同时也是对品牌认可度最高的用户。
- 字段M:消费金额是电商相关业务数据库的支柱,也可以用来验证“帕雷托法则”——公司80%的收入来自20%的顾客。M值带有时间范围,指的是一段时间(通常是1年)内的消费金额。对于一般电商店铺而言,M值对客户细分的作用相对较弱(因为客单价波动幅度不大)。

RFM
Id
1276232.61
2351507.11
3416817.62
4311232.81
51471913.05
data.shape
(940, 3)
data.index
Int64Index([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,...933, 934, 935, 936, 937, 938, 939, 940, 941, 942],dtype='int64', name='Id', length=940)

数据标准化

data_std = 1.0 * (data - data.mean()) / data.std()
data_std.head()
RFM
Id
10.764186-0.493579-1.158711
2-1.024757-0.6300790.622527
3-0.9502170.871423-0.341103
4-1.0247570.188922-1.158432
5-0.204824-0.3570791.189868
k =8  # k-1个簇
iteration = 500  # 聚类最大循环次数
inertia = []  # 簇内误差平方和
for i in range(1, k):model = KMeans(n_clusters=i, n_jobs=4, max_iter=iteration, random_state=1234)model.fit(data_std)inertia.append(model.inertia_)
font = {'family':'SimHei', 'size':'20'}
plt.rc('font', **font)
plt.figure(figsize=(20,6))
plt.plot(range(1, k), inertia)
plt.title('查看最佳k值', fontsize=20)
plt.xlabel('簇的数量')
plt.ylabel('簇内误差平方和')
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RP58bDaK-1645165442623)(output_8_0.png)]

label = pd.Series(model.labels_)
labels = label.value_counts()
labels   #  每个类簇的样本数
1    218
2    189
5    182
6    173
0    144
4     28
3      6
dtype: int64
centers = pd.DataFrame(model.cluster_centers_)
centers    # 簇类中心
012
00.4882871.1539020.260323
1-0.206534-0.5461750.766205
20.496397-0.645968-0.674198
30.8635720.7121737.363321
44.025280-0.1377030.273264
5-0.643460-0.727579-0.853512
6-0.6929921.1964980.152670
# 拼接类簇的数目和簇类中心
output = pd.concat([labels, centers], axis=1)
output
0012
01440.4882871.1539020.260323
1218-0.206534-0.5461750.766205
21890.496397-0.645968-0.674198
360.8635720.7121737.363321
4284.025280-0.1377030.273264
5182-0.643460-0.727579-0.853512
6173-0.6929921.1964980.152670

KMeans追求的效果是:同一聚类内部距离最小化,不同聚类组间距离最大化

其实,聚类处理到这一步,已经可以有一些结论出来了。上面我们聚了7个类别,实际有的类别所包含的样本量比较少,例如类别3和类别4,所以可以重新把上面的步骤跑一遍,然后把k值设置更小一些。

output.columns = ['样本数', 'R', 'F', 'M']
output.columns
Index(['样本数', 'R', 'F', 'M'], dtype='object')
output
样本数RFM
01440.4882871.1539020.260323
1218-0.206534-0.5461750.766205
21890.496397-0.645968-0.674198
360.8635720.7121737.363321
4284.025280-0.1377030.273264
5182-0.643460-0.727579-0.853512
6173-0.6929921.1964980.152670
output.iloc[3]['F']
0.71217272223757799

详细标记原始数据每个样本的类别

model.labels_
array([2, 1, 6, 5, 1, 2, 5, 2, 2, 6, 5, 2, 1, 0, 1, 6, 4, 2, 5, 2, 5, 1, 6,2, 2, 0, 1, 1, 2, 3, 6, 2, 5, 1, 6, 6, 5, 1, 1, 2, 5, 6, 5, 5, 6, 1,2, 2, 6, 6, 1, 1, 1, 6, 2, 2, 1, 4, 1, 2, 5, 0, 6, 1, 1, 2, 1, 1, 2,1, 0, 0, 5, 2, 1, 5, 4, 6, 6, 1, 2, 2, 5, 2, 5, 6, 0, 2, 5, 0, 4, 5,6, 6, 2, 1, 6, 2, 6, 6, 5, 2, 4, 0, 0, 5, 5, 0, 0, 5, 2, 6, 1, 5, 2,2, 5, 2, 4, 0, 2, 1, 5, 2, 2, 2, 5, 2, 2, 0, 1, 2, 5, 5, 2, 2, 5, 2,4, 2, 1, 1, 5, 0, 2, 5, 5, 2, 0, 1, 6, 1, 6, 5, 2, 2, 1, 5, 1, 1, 1,0, 2, 2, 5, 5, 5, 5, 0, 5, 0, 6, 6, 1, 2, 1, 2, 2, 6, 5, 0, 5, 1, 2,2, 6, 2, 6, 6, 1, 2, 0, 4, 2, 1, 1, 1, 1, 5, 5, 5, 5, 2, 5, 5, 1, 2,2, 1, 1, 5, 5, 0, 6, 2, 5, 5, 2, 0, 2, 1, 6, 1, 5, 2, 3, 5, 1, 5, 6,2, 2, 1, 1, 1, 2, 2, 1, 5, 5, 5, 1, 1, 0, 5, 1, 5, 2, 5, 6, 6, 0, 1,5, 4, 2, 2, 2, 1, 0, 5, 6, 1, 1, 6, 2, 6, 2, 4, 1, 2, 2, 1, 6, 0, 6,1, 6, 5, 1, 1, 4, 2, 1, 2, 1, 0, 0, 1, 5, 6, 2, 5, 5, 1, 1, 5, 4, 5,4, 0, 6, 5, 0, 1, 1, 5, 1, 6, 2, 5, 6, 2, 1, 5, 1, 6, 4, 1, 0, 2, 5,1, 6, 6, 1, 2, 5, 1, 6, 5, 0, 4, 1, 0, 0, 2, 6, 3, 6, 5, 2, 1, 2, 0,5, 5, 1, 5, 0, 2, 5, 2, 6, 5, 0, 2, 6, 0, 5, 1, 6, 0, 2, 6, 2, 2, 0,1, 2, 2, 0, 6, 6, 1, 2, 6, 5, 2, 6, 2, 6, 5, 1, 5, 1, 1, 6, 5, 5, 6,5, 6, 0, 2, 0, 5, 1, 6, 2, 1, 6, 6, 2, 6, 0, 0, 0, 1, 6, 2, 6, 6, 1,6, 6, 6, 5, 4, 1, 5, 6, 5, 0, 0, 2, 1, 6, 0, 0, 1, 5, 1, 6, 0, 1, 0,1, 0, 2, 6, 6, 5, 6, 5, 0, 5, 2, 6, 5, 1, 2, 1, 6, 5, 1, 5, 6, 6, 5,6, 5, 0, 5, 0, 0, 6, 1, 0, 6, 0, 0, 5, 2, 0, 1, 0, 2, 1, 6, 1, 1, 6,3, 5, 2, 1, 1, 5, 5, 2, 6, 6, 1, 6, 5, 1, 0, 1, 0, 6, 1, 1, 1, 5, 1,1, 0, 5, 6, 0, 1, 0, 0, 1, 0, 5, 0, 5, 2, 1, 2, 6, 0, 3, 1, 2, 1, 2,5, 0, 2, 6, 0, 5, 1, 2, 0, 0, 6, 6, 1, 0, 5, 0, 1, 1, 6, 5, 1, 2, 5,0, 1, 1, 0, 2, 6, 1, 1, 0, 1, 5, 1, 1, 5, 5, 0, 0, 1, 1, 6, 6, 1, 0,2, 0, 6, 1, 6, 2, 1, 2, 5, 5, 6, 2, 2, 6, 0, 5, 2, 2, 6, 0, 5, 0, 6,5, 0, 0, 5, 5, 2, 1, 6, 0, 2, 0, 1, 5, 4, 2, 2, 5, 5, 2, 5, 1, 0, 1,2, 0, 6, 5, 4, 1, 1, 2, 0, 6, 6, 1, 5, 0, 6, 0, 1, 1, 5, 4, 1, 6, 0,2, 2, 1, 5, 1, 0, 2, 6, 2, 4, 0, 6, 5, 5, 0, 2, 1, 1, 5, 1, 6, 0, 1,6, 1, 4, 6, 6, 6, 1, 1, 1, 1, 0, 1, 5, 1, 5, 0, 2, 6, 5, 5, 2, 5, 1,0, 1, 1, 0, 1, 6, 1, 1, 1, 1, 4, 6, 1, 2, 1, 1, 2, 6, 2, 2, 6, 1, 2,5, 6, 6, 5, 5, 1, 1, 4, 0, 6, 5, 5, 5, 5, 1, 0, 1, 6, 5, 1, 0, 0, 5,2, 4, 2, 2, 2, 1, 6, 2, 5, 5, 5, 2, 1, 2, 5, 5, 0, 0, 6, 6, 2, 6, 1,0, 0, 6, 0, 2, 0, 0, 2, 6, 6, 0, 0, 1, 2, 6, 6, 5, 5, 6, 5, 6, 6, 2,1, 1, 5, 5, 1, 1, 2, 6, 2, 4, 2, 4, 6, 5, 0, 2, 6, 0, 6, 6, 5, 6, 1,0, 0, 5, 6, 1, 5, 5, 5, 5, 2, 2, 1, 6, 0, 6, 5, 6, 0, 2, 1, 0, 2, 1,2, 0, 1, 6, 2, 2, 0, 2, 5, 0, 1, 0, 0, 6, 5, 1, 1, 5, 2, 6, 1, 5, 2,5, 2, 2, 2, 1, 1, 0, 1, 1, 0, 6, 5, 5, 6, 5, 1, 0, 6, 2, 1, 0, 0, 2,0, 0, 6, 6, 1, 2, 1, 4, 0, 1, 6, 5, 1, 6, 2, 2, 0, 6, 6, 2, 1, 6, 1,6, 2, 4, 2, 2, 1, 2, 2, 0, 1, 6, 5, 2, 6, 6, 5, 1, 6, 1, 2, 5, 5, 2,6, 1, 2, 2, 0, 1, 6, 0, 0, 0, 1, 6, 3, 6, 1, 1, 5, 1, 2, 2])
data.index
Int64Index([  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,...933, 934, 935, 936, 937, 938, 939, 940, 941, 942],dtype='int64', name='Id', length=940)
summary = pd.concat([data, pd.Series(model.labels_, index=data.index)], axis=1)
summary.head()
RFM0
Id
1276232.612
2351507.111
3416817.626
4311232.815
51471913.051
summary.columns = ['R', 'F', 'M', 'label']
summary.head()
RFMlabel
Id
1276232.612
2351507.111
3416817.626
4311232.815
51471913.051
summary.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 940 entries, 1 to 942
Data columns (total 4 columns):
R        940 non-null int64
F        940 non-null int64
M        940 non-null float64
label    940 non-null int32
dtypes: float64(1), int32(1), int64(2)
memory usage: 33.0 KB
# 类别0
dd = summary[summary['label'] == 0]
dd.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 144 entries, 13 to 929
Data columns (total 5 columns):
Id       144 non-null int64
R        144 non-null int64
F        144 non-null int64
M        144 non-null float64
label    144 non-null int64
dtypes: float64(1), int64(4)
memory usage: 6.8 KB
# 用户群0(label=0)
plt.figure(figsize=(12,9))
plt.subplot(311)
dd['R'].plot(kind='kde')
plt.legend()
plt.subplot(312)
dd['F'].plot(kind='kde')
plt.legend()
plt.subplot(313)
dd['M'].plot(kind='kde')
plt.legend()
plt.show()

output_24_0

分群0的特点

  • R 间隔多分布在0到15天左右
  • F 消费频率集中在10到25次
  • M 消费金额集中在500到2000左右
# 用户群1(label=1)
dd1 = summary[summary['label'] == 1]plt.figure(figsize=(12,9))
plt.subplot(311)
dd1['R'].plot(kind='kde')
plt.legend()
plt.subplot(312)
dd1['F'].plot(kind='kde')
plt.legend()
plt.subplot(313)
dd1['M'].plot(kind='kde')
plt.legend()
plt.show()

output_26_0

分群1的特点

  • R 间隔多分布在0到35天左右
  • F 消费频率集中在0到12次
  • M 消费金额集中在1000到2000左右

其他用户的分群同理,都可以整理出来。

那么问题来了,整理这些分群特点有什么用处呢?
用处就是可以把用户拆分成不同的用户包,支持后期对用户的精细化运营,例如给不同的用户群设置不同额度的优惠券,或者给不同的用户群推广不同价位的商品等等。

-------------------------------------END--------------------------------------------

这篇关于KMeans算法在RFM模型(用户分层模型)上的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616019

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig