2024华数杯国际赛A题16页完整思路+五小问py代码数据集+后续高质量参考论文

本文主要是介绍2024华数杯国际赛A题16页完整思路+五小问py代码数据集+后续高质量参考论文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这回带大家体验一下2024“华数杯”国际大学生数学建模竞赛呀!

完整内容获取在文末

此题涉及到放射性废水从日本排放到海洋中的扩散问题,以及对环境和人类健康的潜在影响。

## 问题重述

1. **预测污染范围和程度:**

   - 使用数学模型描述放射性废水在海水中的扩散速率和方向,考虑水流、环境条件等因素。

   - 预测在截至2023年8月27日12:00 AM时,已经释放的1,095吨废水的基础上,如果之后不再有放射性废水排放,预测2023年9月27日时日本海域的放射性废水污染范围和程度。

2. **三次排放后的扩散路径:**

   - 建立数学模型研究在日本政府三次排放后,如果未来不再排放放射性废水,考虑海洋循环、水动力学、海床地形、水深变化、潮汐和季节性波动等因素,估计需要多长时间才会污染中国领海。

3. **对中国渔业经济的长期影响:**

   - 根据表格1中的调查结果,分析放射性废水排放事件对中国未来渔业经济的长期影响。

4. **全球海洋污染情况:**

   - 在日本排放放射性废水30年后,判断全球海域是否都会受到污染,以及哪个地方将是最污染的。给出完全受到污染的年份。

5. **UN环境计划的建议信:**

   - 撰写一封不超过一页的建议信,概述研究的主要结果和提出对UN环境计划的建议。

## 问题1:预测污染范围和程度

#### 1.1 基本假设:

- 海洋是均匀的介质。

- 废水在排放点瞬时释放,并在海水中以某种速率扩散。

#### 1.2 一维扩散方程:

考虑一维空间中的扩散方程:

$$

\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}

$$

其中:

- $C(x, t)$ 是废水在位置 $x$ 和时间 $t$ 处的浓度。

- $D$ 是扩散系数。

#### 1.3 初始和边界条件:

- 初始条件(排放瞬间):$C(x, 0) = \delta(x)$,其中 $\delta(x)$ 是Dirac Delta函数,表示在排放点处有一个瞬时的高浓度。

- 边界条件:考虑海洋边界,通常可以设定边界处的浓度为零:$C(0, t) = C(L, t) = 0$,其中 $L$ 是模拟海域的长度。

#### 1.4 数值解法:

使用差分方法对方程进行离散化。一种可能的离散形式是显式差分法:

$$

C_i^{n+1} = C_i^n + \frac{D \Delta t}{(\Delta x)^2} (C_{i+1}^n - 2C_i^n + C_{i-1}^n)

$$

其中:

- $C_i^n$ 是网格点 $(i, n)$ 处的浓度。

- $\Delta x$ 是空间离散步长,$\Delta t$ 是时间离散步长。

#### 1.5 模型验证:

通过使用已知的实测数据验证模型的准确性。可以使用实际的放射性废水排放数据作为输入,并与实际观测的海域浓度进行比较。

#### 1.6 预测未来污染范围:

使用模型对未来废水排放情况进行模拟。根据实际的放射性废水排放计划,逐步更新浓度分布。

#### 1.7 结果分析:

分析模拟结果,包括废水扩散的范围、浓度分布等。根据模拟结果,可以制定相应的环境保护措施和紧急计划。

```python

import numpy as np

import matplotlib.pyplot as plt

def simulate_diffusion(L, T, D, delta_x, delta_t):

    # 模型参数

    num_points = int(L / delta_x) + 1

    num_steps = int(T / delta_t) + 1

    # 网格和初始条件

    x = np.linspace(0, L, num_points)

    C = np.zeros((num_points, num_steps))

    # 设置初始条件(瞬时释放)

    C[:, 0] = np.where((x >= L/2 - 5) & (x <= L/2 + 5), 1, 0)

部分代码展示:

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.sparse import coo_matrix, kron, eye
from scipy.sparse.linalg import spsolve# 步骤 2: Tritium 浓度模型
def assemble_system_matrices(num_elements, D, x_values, y_values):h_x = (x_values[-1] - x_values[0]) / num_elementsh_y = (y_values[-1] - y_values[0]) / num_elementsnodes = num_elements + 1# 1D stiffness matrixK1D = coo_matrix(([-1, 2, -1], (range(nodes-1), range(1, nodes))), shape=(nodes, nodes)).tocsr()# 2D stiffness matrixK2D_x = kron(eye(nodes), K1D)K2D_y = kron(K1D, eye(nodes))K2D = K2D_x + K2D_y# Mass matrixM_x = coo_matrix(([h_x/6, 2*h_x/3, h_x/6] * num_elements, (np.repeat(range(num_elements), 3), np.tile(range(nodes), num_elements))), shape=(nodes, nodes)).tocsr()M_y = coo_matrix(([h_y/6, 2*h_y/3, h_y/6] * num_elements, (np.repeat(range(num_elements), 3), np.tile(range(nodes), num_elements))), shape=(nodes, nodes)).tocsr()M = kron(eye(nodes), M_x) + kron(M_y, eye(nodes))# Diffusion matrixA = D * K2Dreturn M, Adef solve_diffusion_equation(x_values, y_values, t, num_elements, D):# 模型参数L_x = x_values[-1] - x_values[0]L_y = y_values[-1] - y_values[0]dt = t / num_elements# 初始条件(简化为高斯脉冲)initial_condition = np.exp(-0.5 * ((x_values - np.mean(x_values))**2 + (y_values - np.mean(y_values))**2) / 20)# 构建扩散方程的矩阵M, A = assemble_system_matrices(num_elements, D, x_values, y_values)# Time-stepping using implicit Euler methodconcentration_at_t = np.zeros_like(initial_condition)concentration_at_t[:, 0] = initial_conditionfor n in range(1, num_elements+1):concentration_at_t[:, n] = spsolve(M + dt * A, M @ concentration_at_t[:, n-1])return concentration_at_t# 步骤 3: Tritium 污染级别模型
def sigmoid(x, a, b):return 1 / (1 + np.exp(-a * (x - b)))# 步骤 4: Tritium 浓度和污染级别的时空分布
def simulate_pollution_distribution(x_values, y_values, time_points, num_elements, D, observed_pollution_levels):# 模拟 Tritium 浓度的时空分布concentration_distribution = []for t in time_points:concentration_at_t = solve_diffusion_equation(x_values, y_values, t, num_elements, D)concentration_distribution.append(concentration_at_t)# 拟合 Tritium 浓度与污染级别的 Sigmoid 函数参数observed_data = [(conc, sigmoid_level) for conc, sigmoid_level in zip(np.ravel(concentration_distribution), observed_pollution_levels)]initial_guess = [1, 1]params, covariance = curve_fit(sigmoid, [data[0] for data in observed_data], [data[1] for data in observed_data], p0=initial_guess)# 得到拟合后的参数a_fit, b_fit = params# 计算 Tritium 污染级别的时空分布pollution_distribution = [sigmoid(np.ravel(concentration_at_t), a_fit, b_fit) for concentration_at_t in concentration_distribution]return pollution_distribution# 步骤 5: 全球海域污染预测
def predict_global_pollution(x_values, y_values, time_points, num_elements, D, observed_pollution_levels):# 模拟 Tritium 浓度和 Tritium 污染级别的时空分布pollution_distribution = simulate_pollution_distribution(x_values, y_values, time_points, num_elements, D, observed_pollution_levels)# TODO: 进一步分析和预测未来全球海域 Tritium 污染的时空分布return pollution_distribution# 步骤 6: 污染最严重地区分析
def analyze_most_affected_region(x_values, y_values, pollution_distribution):# TODO: 根据模拟结果,分析哪个地区在 30 年后可能受到 Tritium 污染最严重。考虑海流、地形、排放点位置等因素。most_affected_region = Nonereturn most_affected_region# 步骤 7: 结论与建议
def conclude_and_recommend():# TODO: 提供关于 Tritium 污染程度的定量分析结果,包括全球污染程度和具体受影响的地区。提出相关建议,pass# 模型参数
x_min, x_max = 0, 100
y_min, y_max = 0, 100
num_elements = 100
D = 0.1
observed_pollution_levels = [0.1, 0.3, 0.6, 0.8]  # 示例观测数据# 时空离散化
x_values = np.linspace(x_min, x_max, num_elements)
y_values = np.linspace(y_min, y_max, num_elements)
time_points = np.array([1, 2, 3, 4])  # 示例时间点# 预测 Tritium 污染分布
pollution_distribution = predict_global_pollution(x_values, y_values, time_points, num_elements, D, observed_pollution_levels)# 分析最严重污染

点击链接加入群聊【2024华数杯数学建模资料总群】:

这篇关于2024华数杯国际赛A题16页完整思路+五小问py代码数据集+后续高质量参考论文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616000

相关文章

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

使用Java发送邮件到QQ邮箱的完整指南

《使用Java发送邮件到QQ邮箱的完整指南》在现代软件开发中,邮件发送功能是一个常见的需求,无论是用户注册验证、密码重置,还是系统通知,邮件都是一种重要的通信方式,本文将详细介绍如何使用Java编写程... 目录引言1. 准备工作1.1 获取QQ邮箱的SMTP授权码1.2 添加JavaMail依赖2. 实现

IDEA与JDK、Maven安装配置完整步骤解析

《IDEA与JDK、Maven安装配置完整步骤解析》:本文主要介绍如何安装和配置IDE(IntelliJIDEA),包括IDE的安装步骤、JDK的下载与配置、Maven的安装与配置,以及如何在I... 目录1. IDE安装步骤2.配置操作步骤3. JDK配置下载JDK配置JDK环境变量4. Maven配置下

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

Java中有什么工具可以进行代码反编译详解

《Java中有什么工具可以进行代码反编译详解》:本文主要介绍Java中有什么工具可以进行代码反编译的相关资,料,包括JD-GUI、CFR、Procyon、Fernflower、Javap、Byte... 目录1.JD-GUI2.CFR3.Procyon Decompiler4.Fernflower5.Jav