2024华数杯国际赛A题16页完整思路+五小问py代码数据集+后续高质量参考论文

本文主要是介绍2024华数杯国际赛A题16页完整思路+五小问py代码数据集+后续高质量参考论文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这回带大家体验一下2024“华数杯”国际大学生数学建模竞赛呀!

完整内容获取在文末

此题涉及到放射性废水从日本排放到海洋中的扩散问题,以及对环境和人类健康的潜在影响。

## 问题重述

1. **预测污染范围和程度:**

   - 使用数学模型描述放射性废水在海水中的扩散速率和方向,考虑水流、环境条件等因素。

   - 预测在截至2023年8月27日12:00 AM时,已经释放的1,095吨废水的基础上,如果之后不再有放射性废水排放,预测2023年9月27日时日本海域的放射性废水污染范围和程度。

2. **三次排放后的扩散路径:**

   - 建立数学模型研究在日本政府三次排放后,如果未来不再排放放射性废水,考虑海洋循环、水动力学、海床地形、水深变化、潮汐和季节性波动等因素,估计需要多长时间才会污染中国领海。

3. **对中国渔业经济的长期影响:**

   - 根据表格1中的调查结果,分析放射性废水排放事件对中国未来渔业经济的长期影响。

4. **全球海洋污染情况:**

   - 在日本排放放射性废水30年后,判断全球海域是否都会受到污染,以及哪个地方将是最污染的。给出完全受到污染的年份。

5. **UN环境计划的建议信:**

   - 撰写一封不超过一页的建议信,概述研究的主要结果和提出对UN环境计划的建议。

## 问题1:预测污染范围和程度

#### 1.1 基本假设:

- 海洋是均匀的介质。

- 废水在排放点瞬时释放,并在海水中以某种速率扩散。

#### 1.2 一维扩散方程:

考虑一维空间中的扩散方程:

$$

\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}

$$

其中:

- $C(x, t)$ 是废水在位置 $x$ 和时间 $t$ 处的浓度。

- $D$ 是扩散系数。

#### 1.3 初始和边界条件:

- 初始条件(排放瞬间):$C(x, 0) = \delta(x)$,其中 $\delta(x)$ 是Dirac Delta函数,表示在排放点处有一个瞬时的高浓度。

- 边界条件:考虑海洋边界,通常可以设定边界处的浓度为零:$C(0, t) = C(L, t) = 0$,其中 $L$ 是模拟海域的长度。

#### 1.4 数值解法:

使用差分方法对方程进行离散化。一种可能的离散形式是显式差分法:

$$

C_i^{n+1} = C_i^n + \frac{D \Delta t}{(\Delta x)^2} (C_{i+1}^n - 2C_i^n + C_{i-1}^n)

$$

其中:

- $C_i^n$ 是网格点 $(i, n)$ 处的浓度。

- $\Delta x$ 是空间离散步长,$\Delta t$ 是时间离散步长。

#### 1.5 模型验证:

通过使用已知的实测数据验证模型的准确性。可以使用实际的放射性废水排放数据作为输入,并与实际观测的海域浓度进行比较。

#### 1.6 预测未来污染范围:

使用模型对未来废水排放情况进行模拟。根据实际的放射性废水排放计划,逐步更新浓度分布。

#### 1.7 结果分析:

分析模拟结果,包括废水扩散的范围、浓度分布等。根据模拟结果,可以制定相应的环境保护措施和紧急计划。

```python

import numpy as np

import matplotlib.pyplot as plt

def simulate_diffusion(L, T, D, delta_x, delta_t):

    # 模型参数

    num_points = int(L / delta_x) + 1

    num_steps = int(T / delta_t) + 1

    # 网格和初始条件

    x = np.linspace(0, L, num_points)

    C = np.zeros((num_points, num_steps))

    # 设置初始条件(瞬时释放)

    C[:, 0] = np.where((x >= L/2 - 5) & (x <= L/2 + 5), 1, 0)

部分代码展示:

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.sparse import coo_matrix, kron, eye
from scipy.sparse.linalg import spsolve# 步骤 2: Tritium 浓度模型
def assemble_system_matrices(num_elements, D, x_values, y_values):h_x = (x_values[-1] - x_values[0]) / num_elementsh_y = (y_values[-1] - y_values[0]) / num_elementsnodes = num_elements + 1# 1D stiffness matrixK1D = coo_matrix(([-1, 2, -1], (range(nodes-1), range(1, nodes))), shape=(nodes, nodes)).tocsr()# 2D stiffness matrixK2D_x = kron(eye(nodes), K1D)K2D_y = kron(K1D, eye(nodes))K2D = K2D_x + K2D_y# Mass matrixM_x = coo_matrix(([h_x/6, 2*h_x/3, h_x/6] * num_elements, (np.repeat(range(num_elements), 3), np.tile(range(nodes), num_elements))), shape=(nodes, nodes)).tocsr()M_y = coo_matrix(([h_y/6, 2*h_y/3, h_y/6] * num_elements, (np.repeat(range(num_elements), 3), np.tile(range(nodes), num_elements))), shape=(nodes, nodes)).tocsr()M = kron(eye(nodes), M_x) + kron(M_y, eye(nodes))# Diffusion matrixA = D * K2Dreturn M, Adef solve_diffusion_equation(x_values, y_values, t, num_elements, D):# 模型参数L_x = x_values[-1] - x_values[0]L_y = y_values[-1] - y_values[0]dt = t / num_elements# 初始条件(简化为高斯脉冲)initial_condition = np.exp(-0.5 * ((x_values - np.mean(x_values))**2 + (y_values - np.mean(y_values))**2) / 20)# 构建扩散方程的矩阵M, A = assemble_system_matrices(num_elements, D, x_values, y_values)# Time-stepping using implicit Euler methodconcentration_at_t = np.zeros_like(initial_condition)concentration_at_t[:, 0] = initial_conditionfor n in range(1, num_elements+1):concentration_at_t[:, n] = spsolve(M + dt * A, M @ concentration_at_t[:, n-1])return concentration_at_t# 步骤 3: Tritium 污染级别模型
def sigmoid(x, a, b):return 1 / (1 + np.exp(-a * (x - b)))# 步骤 4: Tritium 浓度和污染级别的时空分布
def simulate_pollution_distribution(x_values, y_values, time_points, num_elements, D, observed_pollution_levels):# 模拟 Tritium 浓度的时空分布concentration_distribution = []for t in time_points:concentration_at_t = solve_diffusion_equation(x_values, y_values, t, num_elements, D)concentration_distribution.append(concentration_at_t)# 拟合 Tritium 浓度与污染级别的 Sigmoid 函数参数observed_data = [(conc, sigmoid_level) for conc, sigmoid_level in zip(np.ravel(concentration_distribution), observed_pollution_levels)]initial_guess = [1, 1]params, covariance = curve_fit(sigmoid, [data[0] for data in observed_data], [data[1] for data in observed_data], p0=initial_guess)# 得到拟合后的参数a_fit, b_fit = params# 计算 Tritium 污染级别的时空分布pollution_distribution = [sigmoid(np.ravel(concentration_at_t), a_fit, b_fit) for concentration_at_t in concentration_distribution]return pollution_distribution# 步骤 5: 全球海域污染预测
def predict_global_pollution(x_values, y_values, time_points, num_elements, D, observed_pollution_levels):# 模拟 Tritium 浓度和 Tritium 污染级别的时空分布pollution_distribution = simulate_pollution_distribution(x_values, y_values, time_points, num_elements, D, observed_pollution_levels)# TODO: 进一步分析和预测未来全球海域 Tritium 污染的时空分布return pollution_distribution# 步骤 6: 污染最严重地区分析
def analyze_most_affected_region(x_values, y_values, pollution_distribution):# TODO: 根据模拟结果,分析哪个地区在 30 年后可能受到 Tritium 污染最严重。考虑海流、地形、排放点位置等因素。most_affected_region = Nonereturn most_affected_region# 步骤 7: 结论与建议
def conclude_and_recommend():# TODO: 提供关于 Tritium 污染程度的定量分析结果,包括全球污染程度和具体受影响的地区。提出相关建议,pass# 模型参数
x_min, x_max = 0, 100
y_min, y_max = 0, 100
num_elements = 100
D = 0.1
observed_pollution_levels = [0.1, 0.3, 0.6, 0.8]  # 示例观测数据# 时空离散化
x_values = np.linspace(x_min, x_max, num_elements)
y_values = np.linspace(y_min, y_max, num_elements)
time_points = np.array([1, 2, 3, 4])  # 示例时间点# 预测 Tritium 污染分布
pollution_distribution = predict_global_pollution(x_values, y_values, time_points, num_elements, D, observed_pollution_levels)# 分析最严重污染

点击链接加入群聊【2024华数杯数学建模资料总群】:

这篇关于2024华数杯国际赛A题16页完整思路+五小问py代码数据集+后续高质量参考论文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616000

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi