2024华数杯国际赛A题16页完整思路+五小问py代码数据集+后续高质量参考论文

本文主要是介绍2024华数杯国际赛A题16页完整思路+五小问py代码数据集+后续高质量参考论文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这回带大家体验一下2024“华数杯”国际大学生数学建模竞赛呀!

完整内容获取在文末

此题涉及到放射性废水从日本排放到海洋中的扩散问题,以及对环境和人类健康的潜在影响。

## 问题重述

1. **预测污染范围和程度:**

   - 使用数学模型描述放射性废水在海水中的扩散速率和方向,考虑水流、环境条件等因素。

   - 预测在截至2023年8月27日12:00 AM时,已经释放的1,095吨废水的基础上,如果之后不再有放射性废水排放,预测2023年9月27日时日本海域的放射性废水污染范围和程度。

2. **三次排放后的扩散路径:**

   - 建立数学模型研究在日本政府三次排放后,如果未来不再排放放射性废水,考虑海洋循环、水动力学、海床地形、水深变化、潮汐和季节性波动等因素,估计需要多长时间才会污染中国领海。

3. **对中国渔业经济的长期影响:**

   - 根据表格1中的调查结果,分析放射性废水排放事件对中国未来渔业经济的长期影响。

4. **全球海洋污染情况:**

   - 在日本排放放射性废水30年后,判断全球海域是否都会受到污染,以及哪个地方将是最污染的。给出完全受到污染的年份。

5. **UN环境计划的建议信:**

   - 撰写一封不超过一页的建议信,概述研究的主要结果和提出对UN环境计划的建议。

## 问题1:预测污染范围和程度

#### 1.1 基本假设:

- 海洋是均匀的介质。

- 废水在排放点瞬时释放,并在海水中以某种速率扩散。

#### 1.2 一维扩散方程:

考虑一维空间中的扩散方程:

$$

\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}

$$

其中:

- $C(x, t)$ 是废水在位置 $x$ 和时间 $t$ 处的浓度。

- $D$ 是扩散系数。

#### 1.3 初始和边界条件:

- 初始条件(排放瞬间):$C(x, 0) = \delta(x)$,其中 $\delta(x)$ 是Dirac Delta函数,表示在排放点处有一个瞬时的高浓度。

- 边界条件:考虑海洋边界,通常可以设定边界处的浓度为零:$C(0, t) = C(L, t) = 0$,其中 $L$ 是模拟海域的长度。

#### 1.4 数值解法:

使用差分方法对方程进行离散化。一种可能的离散形式是显式差分法:

$$

C_i^{n+1} = C_i^n + \frac{D \Delta t}{(\Delta x)^2} (C_{i+1}^n - 2C_i^n + C_{i-1}^n)

$$

其中:

- $C_i^n$ 是网格点 $(i, n)$ 处的浓度。

- $\Delta x$ 是空间离散步长,$\Delta t$ 是时间离散步长。

#### 1.5 模型验证:

通过使用已知的实测数据验证模型的准确性。可以使用实际的放射性废水排放数据作为输入,并与实际观测的海域浓度进行比较。

#### 1.6 预测未来污染范围:

使用模型对未来废水排放情况进行模拟。根据实际的放射性废水排放计划,逐步更新浓度分布。

#### 1.7 结果分析:

分析模拟结果,包括废水扩散的范围、浓度分布等。根据模拟结果,可以制定相应的环境保护措施和紧急计划。

```python

import numpy as np

import matplotlib.pyplot as plt

def simulate_diffusion(L, T, D, delta_x, delta_t):

    # 模型参数

    num_points = int(L / delta_x) + 1

    num_steps = int(T / delta_t) + 1

    # 网格和初始条件

    x = np.linspace(0, L, num_points)

    C = np.zeros((num_points, num_steps))

    # 设置初始条件(瞬时释放)

    C[:, 0] = np.where((x >= L/2 - 5) & (x <= L/2 + 5), 1, 0)

部分代码展示:

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.sparse import coo_matrix, kron, eye
from scipy.sparse.linalg import spsolve# 步骤 2: Tritium 浓度模型
def assemble_system_matrices(num_elements, D, x_values, y_values):h_x = (x_values[-1] - x_values[0]) / num_elementsh_y = (y_values[-1] - y_values[0]) / num_elementsnodes = num_elements + 1# 1D stiffness matrixK1D = coo_matrix(([-1, 2, -1], (range(nodes-1), range(1, nodes))), shape=(nodes, nodes)).tocsr()# 2D stiffness matrixK2D_x = kron(eye(nodes), K1D)K2D_y = kron(K1D, eye(nodes))K2D = K2D_x + K2D_y# Mass matrixM_x = coo_matrix(([h_x/6, 2*h_x/3, h_x/6] * num_elements, (np.repeat(range(num_elements), 3), np.tile(range(nodes), num_elements))), shape=(nodes, nodes)).tocsr()M_y = coo_matrix(([h_y/6, 2*h_y/3, h_y/6] * num_elements, (np.repeat(range(num_elements), 3), np.tile(range(nodes), num_elements))), shape=(nodes, nodes)).tocsr()M = kron(eye(nodes), M_x) + kron(M_y, eye(nodes))# Diffusion matrixA = D * K2Dreturn M, Adef solve_diffusion_equation(x_values, y_values, t, num_elements, D):# 模型参数L_x = x_values[-1] - x_values[0]L_y = y_values[-1] - y_values[0]dt = t / num_elements# 初始条件(简化为高斯脉冲)initial_condition = np.exp(-0.5 * ((x_values - np.mean(x_values))**2 + (y_values - np.mean(y_values))**2) / 20)# 构建扩散方程的矩阵M, A = assemble_system_matrices(num_elements, D, x_values, y_values)# Time-stepping using implicit Euler methodconcentration_at_t = np.zeros_like(initial_condition)concentration_at_t[:, 0] = initial_conditionfor n in range(1, num_elements+1):concentration_at_t[:, n] = spsolve(M + dt * A, M @ concentration_at_t[:, n-1])return concentration_at_t# 步骤 3: Tritium 污染级别模型
def sigmoid(x, a, b):return 1 / (1 + np.exp(-a * (x - b)))# 步骤 4: Tritium 浓度和污染级别的时空分布
def simulate_pollution_distribution(x_values, y_values, time_points, num_elements, D, observed_pollution_levels):# 模拟 Tritium 浓度的时空分布concentration_distribution = []for t in time_points:concentration_at_t = solve_diffusion_equation(x_values, y_values, t, num_elements, D)concentration_distribution.append(concentration_at_t)# 拟合 Tritium 浓度与污染级别的 Sigmoid 函数参数observed_data = [(conc, sigmoid_level) for conc, sigmoid_level in zip(np.ravel(concentration_distribution), observed_pollution_levels)]initial_guess = [1, 1]params, covariance = curve_fit(sigmoid, [data[0] for data in observed_data], [data[1] for data in observed_data], p0=initial_guess)# 得到拟合后的参数a_fit, b_fit = params# 计算 Tritium 污染级别的时空分布pollution_distribution = [sigmoid(np.ravel(concentration_at_t), a_fit, b_fit) for concentration_at_t in concentration_distribution]return pollution_distribution# 步骤 5: 全球海域污染预测
def predict_global_pollution(x_values, y_values, time_points, num_elements, D, observed_pollution_levels):# 模拟 Tritium 浓度和 Tritium 污染级别的时空分布pollution_distribution = simulate_pollution_distribution(x_values, y_values, time_points, num_elements, D, observed_pollution_levels)# TODO: 进一步分析和预测未来全球海域 Tritium 污染的时空分布return pollution_distribution# 步骤 6: 污染最严重地区分析
def analyze_most_affected_region(x_values, y_values, pollution_distribution):# TODO: 根据模拟结果,分析哪个地区在 30 年后可能受到 Tritium 污染最严重。考虑海流、地形、排放点位置等因素。most_affected_region = Nonereturn most_affected_region# 步骤 7: 结论与建议
def conclude_and_recommend():# TODO: 提供关于 Tritium 污染程度的定量分析结果,包括全球污染程度和具体受影响的地区。提出相关建议,pass# 模型参数
x_min, x_max = 0, 100
y_min, y_max = 0, 100
num_elements = 100
D = 0.1
observed_pollution_levels = [0.1, 0.3, 0.6, 0.8]  # 示例观测数据# 时空离散化
x_values = np.linspace(x_min, x_max, num_elements)
y_values = np.linspace(y_min, y_max, num_elements)
time_points = np.array([1, 2, 3, 4])  # 示例时间点# 预测 Tritium 污染分布
pollution_distribution = predict_global_pollution(x_values, y_values, time_points, num_elements, D, observed_pollution_levels)# 分析最严重污染

点击链接加入群聊【2024华数杯数学建模资料总群】:

这篇关于2024华数杯国际赛A题16页完整思路+五小问py代码数据集+后续高质量参考论文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616000

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本