Python 和 Java 代码实现:黄金分割法求解一维最优化问题

本文主要是介绍Python 和 Java 代码实现:黄金分割法求解一维最优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python 和 Java 代码实现:黄金分割法求解一维最优化问题

  • 问题描述
    • 区间消去法
    • 黄金分割法
  • 代码实现
    • Python代码
    • Java代码
  • 求解实例

开启一个新系列的学习,这位大佬的文章写的很通透,且有代码实践,个人觉得只有自己把代码写出来了才是真的会了,我对自己的算法学习要求也是这样的,所以推荐!

问题描述

我不是运筹学科班出身,工作之前只做过梯度优化算法和智能优化算法在航天场景中的改进和应用。毕业后虽然选择了运筹优化算法工程师的道路,但却深知自己的运筹认知不够体系化,很想找些书,系统补一下这方面的基础内容。

不过现在国内的运筹学教材大多都是单纯形法起步,看起来挺费劲的。而且我的关注点有:算法原理、不同算法间的联系和区别、工程(Python/Java)实现等,很多内容书上也很难都有。所以我打算基于一些比较简单的优化问题为起点,从简单到复杂,自行去认识和理解这些运筹优化算法。

能想到的最简单的优化问题,应该就是一维最优化问题了:在一个搜索区间内,包含了目标函数的极小值点,而且是个单峰区间,即在该区间内目标函数只有一个极值,下图为一维最优化问题的示意图。图片

区间消去法

在这里插入图片描述

图片

按照以上逻辑不断选取两个点做对比,便可以不断缩小搜索区间,直至搜索区间的长度低于某阈值,即找到了极小值。

在这里插入图片描述

黄金分割法

区间消去法虽然给出了搜索区间缩小的原理,但是每次和该如何选择,却并没有给出具体方案。黄金分割法便在区间消去法的基础上,对c和d的选择做了约束,进而给出它们的确定逻辑:

在这里插入图片描述

代码实现

本文会基于Python和Java语言进行算法实现。Python代码简单,便于学习理解;Java运行速度快,便于工程应用;MATLAB版本就不考虑了,对运筹优化算法的学习和落地应用而言,MATLAB基本没有多少竞争力。

在这里插入图片描述

Python代码

以下的golden_section函数为黄金分割法的Python代码。除该代码外,主函数中还增加了一个for循环,该循环的目的是多次重复调用黄金分割法,以此评估Python代码的计算耗时。

import time  # 待优化函数  
def f(t):  return t ** 2 - t * 5 + 8  def golden_section(a, b, eps):  # 统计迭代次数  cnt = 0  while b - a > eps:  # 根据黄金分割法规则选择内部两点  c = a + (b - a) * 0.382  d = a + (b - a) * 0.618  # 区间消去原理  if f(c) < f(d):  b = d  else:  a = c  cnt += 1  # 两点的中点定义为最优解  return (a + b) / 2, f((a + b) / 2), cnt  if __name__ == '__main__':  # 参数设置  left_point = 1  right_point = 7  min_interval_value = 0.1  # 调用黄金分割法函数求解最小值  best_x, best_y, iter_cnt = 0, 0, 0  t0 = time.time()  for i in range(100000):  best_x, best_y, iter_cnt = golden_section(left_point, right_point, min_interval_value)  print('总耗时为:{} ms'.format((time.time() - t0) * 1000))  print('best_x: {}, best_y: {}, iter_cnt: {}.'.format(best_x, best_y, iter_cnt))  

Java代码

以下的goldenSection函数为黄金分割法的Java代码。与上文一样,主函数中也增加了一个for循环,以此评估Java代码的计算耗时。

public class GoldenSection {  // 主函数入口  public static void main(String[] args) {  // 参数设置  int leftPoint = 1;  int rightPoint = 7;  double minIntervalValue = 0.1;  long t0 = System.currentTimeMillis();  Solution best_solution = new Solution();  for (int i = 0; i < 100000; i++) {  // 调用黄金分割法函数求解最小值  best_solution = goldenSection(leftPoint, rightPoint, minIntervalValue);  }  System.out.println("计算总耗时为: " + (System.currentTimeMillis()-t0) + " ms");  // 输出优化结果  System.out.println("best_x: " + best_solution.best_x);  System.out.println("best_y: " + best_solution.best_y);  System.out.println("cnt: " + best_solution.cnt);  }  // 黄金分割法  private static Solution goldenSection(double a, double b, double eps) {  // 统计迭代次数  int cnt = 0;  while (b - a > eps) {  // 根据黄金分割法规则选择内部两点  double c = a + (b - a) * 0.382;  double d = a + (b - a) * 0.618;  // 区间消去原理  if (f(c) < f(d)) {  b = d;  } else {  a = c;  }  // 更新迭代次数  cnt ++;  }  // 构造最优解对象  Solution best_solution = new Solution();  best_solution.best_x = (a + b) / 2;  best_solution.best_y = f((a + b) / 2);  best_solution.cnt = cnt;  return best_solution;  }  // 待优化函数  private static double f(double t) {  return t * t - t * 5 + 8;  }  // 解对象  private static class Solution {  double best_x;  double best_y;  int cnt;  }  
}  

求解实例

首先运行Python代码,可以得到最优解为1.75,迭代次数为9次。计算100000次,共耗时515毫秒。

总耗时为:515.2740478515625 ms  
best_x: 2.5045211503093046, best_y: 1.7500204408001192, iter_cnt: 9.  

再运行Java代码,可以得到和Python代码相同的解。计算100000次,仅耗时11毫秒。相比之下,Java代码耗时仅为Python代码耗时的2%。对运筹优化算法来说,计算速度是非常重要的,所以如果代码能力允许,尽量使用Java。

计算总耗时为: 11 ms  
best_x: 2.5045211503093046  
best_y: 1.7500204408001192  
cnt: 9  

这篇关于Python 和 Java 代码实现:黄金分割法求解一维最优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/614094

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程