本文主要是介绍【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Flink 系列文章
一、Flink 专栏
Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。
-
1、Flink 部署系列
本部分介绍Flink的部署、配置相关基础内容。 -
2、Flink基础系列
本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 -
3、Flik Table API和SQL基础系列
本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。 -
4、Flik Table API和SQL提高与应用系列
本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。 -
5、Flink 监控系列
本部分和实际的运维、监控工作相关。
二、Flink 示例专栏
Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。
两专栏的所有文章入口点击:Flink 系列文章汇总索引
文章目录
- Flink 系列文章
- 一、maven依赖及数据结构
- 1、maven依赖
- 2、数据结构
- 3、数据源
- 4、验证结果
- 四、通过广播将维表数据传递到下游
- 1、说明
- 2、示例:将事实流与维表进行关联-通过Flink 的Broadcast
- 1)、广播实现
- 2)、实现事实流与维度流join
本文是通过Flink的广播方式进行维度表数据进行广播,事实流进行connection。
如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。
本文除了maven依赖外,没有其他依赖。
本专题分为以下几篇文章:
【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据
【flink番外篇】15、Flink维表实战之6种实现方式-维表来源于第三方数据源
【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游
【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)
一、maven依赖及数据结构
1、maven依赖
本文的所有示例均依赖本部分的pom.xml内容,可能针对下文中的某些示例存在过多的引入,根据自己的情况进行删减。
<properties><encoding>UTF-8</encoding><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><java.version>1.8</java.version><scala.version>2.12</scala.version><flink.version>1.17.0</flink.version>
</properties><dependencies><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-csv</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-json</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-planner --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner_2.12</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-api-java-uber --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-uber</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-runtime</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc</artifactId><version>3.1.0-1.17</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.38</version></dependency><dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>32.0.1-jre</version></dependency><!-- flink连接器 --><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka</artifactId><version>${flink.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kafka --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-sql-connector-kafka</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.commons/commons-compress --><dependency><groupId>org.apache.commons</groupId><artifactId>commons-compress</artifactId><version>1.24.0</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.2</version></dependency><dependency><groupId>org.apache.bahir</groupId><artifactId>flink-connector-redis_2.12</artifactId><version>1.1.0</version><exclusions><exclusion><artifactId>flink-streaming-java_2.12</artifactId><groupId>org.apache.flink</groupId></exclusion><exclusion><artifactId>flink-runtime_2.12</artifactId><groupId>org.apache.flink</groupId></exclusion><exclusion><artifactId>flink-core</artifactId><groupId>org.apache.flink</groupId></exclusion><exclusion><artifactId>flink-java</artifactId><groupId>org.apache.flink</groupId></exclusion><exclusion><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java</artifactId></exclusion><exclusion><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge_2.12</artifactId></exclusion><exclusion><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId></exclusion><exclusion><groupId>org.apache.flink</groupId><artifactId>flink-table-planner_2.12</artifactId></exclusion></exclusions></dependency><!-- https://mvnrepository.com/artifact/com.alibaba/fastjson --><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>2.0.43</version></dependency>
</dependencies>
2、数据结构
本示例仅仅为实现需求:将订单中uId与用户id进行关联,然后输出Tuple2<Order, String>。
- 事实流 order
// 事实表@Data@NoArgsConstructor@AllArgsConstructorstatic class Order {private Integer id;private Integer uId;private Double total;}
- 维度流 user
// 维表@Data@NoArgsConstructor@AllArgsConstructorstatic class User {private Integer id;private String name;private Double balance;private Integer age;private String email;}
3、数据源
事实流数据有几种,具体见示例部分,比如socket、redis、kafka等
维度表流有几种,具体见示例部分,比如静态数据、mysql、socket、kafka等。
如此,实现本文中的示例就需要准备好相应的环境,即mysql、redis、kafka、netcat等。
4、验证结果
本文提供的所有示例均为验证通过的示例,测试的数据均在每个示例中,分为事实流、维度流和运行结果进行注释,在具体的示例中关于验证不再赘述。
四、通过广播将维表数据传递到下游
1、说明
利用Flink的Broadcast State将维表数据流广播到下游做join操作。该种方式实现比较方便,完全满足需求,美中不足的是需要充分利用系统的内存,也就是将数据存储在内容中。
更多内容见文章:
53、Flink 的Broadcast State 模式介绍及示例
2、示例:将事实流与维表进行关联-通过Flink 的Broadcast
1)、广播实现
/** @Author: alanchan* @LastEditors: alanchan* @Description: */
package org.tablesql.join;import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.api.common.state.ReadOnlyBroadcastState;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction;
import org.apache.flink.util.Collector;
import org.tablesql.join.TestJoinDimFromBroadcastDataStreamDemo.Order;
import org.tablesql.join.TestJoinDimFromBroadcastDataStreamDemo.User;// final BroadcastProcessFunction<IN1, IN2, OUT> function)
public class JoinBroadcastProcessFunctionImpl extends BroadcastProcessFunction<Order, User, Tuple2<Order, String>> {// 用于存储规则名称与规则本身的 map 存储结构 MapStateDescriptor<Integer, User> broadcastDesc;JoinBroadcastProcessFunctionImpl(MapStateDescriptor<Integer, User> broadcastDesc) {this.broadcastDesc = broadcastDesc;}// 负责处理广播流的元素@Overridepublic void processBroadcastElement(User value,BroadcastProcessFunction<Order, User, Tuple2<Order, String>>.Context ctx,Collector<Tuple2<Order, String>> out) throws Exception {System.out.println("收到广播数据:" + value);// 得到广播流的存储状态ctx.getBroadcastState(broadcastDesc).put(value.getId(), value);}// 处理非广播流,关联维度@Overridepublic void processElement(Order value,BroadcastProcessFunction<Order, User, Tuple2<Order, String>>.ReadOnlyContext ctx,Collector<Tuple2<Order, String>> out) throws Exception {// 得到广播流的存储状态ReadOnlyBroadcastState<Integer, User> state = ctx.getBroadcastState(broadcastDesc);out.collect(new Tuple2<>(value, state.get(value.getUId()).getName()));}
}
2)、实现事实流与维度流join
/** @Author: alanchan* @LastEditors: alanchan* @Description: */
package org.tablesql.join;import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.streaming.api.datastream.BroadcastStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;public class TestJoinDimFromBroadcastDataStreamDemo {// 维表@Data@NoArgsConstructor@AllArgsConstructorstatic class User {private Integer id;private String name;private Double balance;private Integer age;private String email;}// 事实表@Data@NoArgsConstructor@AllArgsConstructorstatic class Order {private Integer id;private Integer uId;private Double total;}public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// order 实时流DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999).map(o -> {String[] lines = o.split(",");return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));});// user 实时流DataStream<User> userDs = env.socketTextStream("192.168.10.42", 8888).map(o -> {String[] lines = o.split(",");return new User(Integer.valueOf(lines[0]), lines[1], Double.valueOf(lines[2]), Integer.valueOf(lines[3]), lines[4]);}).setParallelism(1);// 一个 map descriptor,它描述了用于存储规则名称与规则本身的 map 存储结构// MapStateDescriptor<String, Rule> ruleStateDescriptor = new MapStateDescriptor<>(// "RulesBroadcastState",// BasicTypeInfo.STRING_TYPE_INFO,// TypeInformation.of(new TypeHint<Rule>() {// }));// 广播流,广播规则并且创建 broadcast state// BroadcastStream<Rule> ruleBroadcastStream = ruleStream.broadcast(ruleStateDescriptor);// 将user流(维表)定义为广播流final MapStateDescriptor<Integer, User> broadcastDesc = new MapStateDescriptor("Alan_RulesBroadcastState",Integer.class,User.class);BroadcastStream<User> broadcastStream = userDs.broadcast(broadcastDesc);// 需要由非广播流来进行调用DataStream result = orderDs.connect(broadcastStream).process(new JoinBroadcastProcessFunctionImpl(broadcastDesc));result.print();// user 流数据(维度表),由于未做容错处理,需要先广播维度数据,否则会出现空指针异常// 1001,alan,18,20,alan.chan.chn@163.com// 1002,alanchan,19,25,alan.chan.chn@163.com// 1003,alanchanchn,20,30,alan.chan.chn@163.com// 1004,alan_chan,27,20,alan.chan.chn@163.com// 1005,alan_chan_chn,36,10,alan.chan.chn@163.com// order 流数据// 16,1002,211// 17,1004,234// 18,1005,175// 控制台输出// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1001, name=alan, balance=18.0, age=20, email=alan.chan.chn@163.com)// ......// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1001, name=alan, balance=18.0, age=20, email=alan.chan.chn@163.com)// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1002, name=alanchan, balance=19.0, age=25, email=alan.chan.chn@163.com)// ......// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1002, name=alanchan, balance=19.0, age=25, email=alan.chan.chn@163.com)// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1003, name=alanchanchn, balance=20.0, age=30, email=alan.chan.chn@163.com)// ......// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1003, name=alanchanchn, balance=20.0, age=30, email=alan.chan.chn@163.com)// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1004, name=alan_chan, balance=27.0, age=20, email=alan.chan.chn@163.com)// ......// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1004, name=alan_chan, balance=27.0, age=20, email=alan.chan.chn@163.com)// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1005, name=alan_chan_chn, balance=36.0, age=10, email=alan.chan.chn@163.com)// ......// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1005, name=alan_chan_chn, balance=36.0, age=10, email=alan.chan.chn@163.com)// 7> (TestJoinDimFromBroadcastDataStreamDemo.Order(id=16, uId=1002, total=211.0),alanchan)// 8> (TestJoinDimFromBroadcastDataStreamDemo.Order(id=17, uId=1004, total=234.0),alan_chan)// 9> (TestJoinDimFromBroadcastDataStreamDemo.Order(id=18, uId=1005, total=175.0),alan_chan_chn)env.execute();}}
以上,本文是通过Flink的广播方式进行维度表数据进行广播,事实流进行connection。
本专题分为以下几篇文章:
【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据
【flink番外篇】15、Flink维表实战之6种实现方式-维表来源于第三方数据源
【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游
【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)
这篇关于【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!