【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游

本文主要是介绍【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink 系列文章

一、Flink 专栏

Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。

  • 1、Flink 部署系列
    本部分介绍Flink的部署、配置相关基础内容。

  • 2、Flink基础系列
    本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。

  • 3、Flik Table API和SQL基础系列
    本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。

  • 4、Flik Table API和SQL提高与应用系列
    本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。

  • 5、Flink 监控系列
    本部分和实际的运维、监控工作相关。

二、Flink 示例专栏

Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。

两专栏的所有文章入口点击:Flink 系列文章汇总索引


文章目录

  • Flink 系列文章
  • 一、maven依赖及数据结构
    • 1、maven依赖
    • 2、数据结构
    • 3、数据源
    • 4、验证结果
  • 四、通过广播将维表数据传递到下游
    • 1、说明
    • 2、示例:将事实流与维表进行关联-通过Flink 的Broadcast
      • 1)、广播实现
      • 2)、实现事实流与维度流join


本文是通过Flink的广播方式进行维度表数据进行广播,事实流进行connection。

如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本文除了maven依赖外,没有其他依赖。

本专题分为以下几篇文章:
【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据
【flink番外篇】15、Flink维表实战之6种实现方式-维表来源于第三方数据源
【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游
【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)

一、maven依赖及数据结构

1、maven依赖

本文的所有示例均依赖本部分的pom.xml内容,可能针对下文中的某些示例存在过多的引入,根据自己的情况进行删减。

<properties><encoding>UTF-8</encoding><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><java.version>1.8</java.version><scala.version>2.12</scala.version><flink.version>1.17.0</flink.version>
</properties><dependencies><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-csv</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-json</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-planner --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner_2.12</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-api-java-uber --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-uber</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-runtime</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc</artifactId><version>3.1.0-1.17</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.38</version></dependency><dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>32.0.1-jre</version></dependency><!-- flink连接器 --><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka</artifactId><version>${flink.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kafka --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-sql-connector-kafka</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.commons/commons-compress --><dependency><groupId>org.apache.commons</groupId><artifactId>commons-compress</artifactId><version>1.24.0</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.2</version></dependency><dependency><groupId>org.apache.bahir</groupId><artifactId>flink-connector-redis_2.12</artifactId><version>1.1.0</version><exclusions><exclusion><artifactId>flink-streaming-java_2.12</artifactId><groupId>org.apache.flink</groupId></exclusion><exclusion><artifactId>flink-runtime_2.12</artifactId><groupId>org.apache.flink</groupId></exclusion><exclusion><artifactId>flink-core</artifactId><groupId>org.apache.flink</groupId></exclusion><exclusion><artifactId>flink-java</artifactId><groupId>org.apache.flink</groupId></exclusion><exclusion><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java</artifactId></exclusion><exclusion><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge_2.12</artifactId></exclusion><exclusion><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId></exclusion><exclusion><groupId>org.apache.flink</groupId><artifactId>flink-table-planner_2.12</artifactId></exclusion></exclusions></dependency><!-- https://mvnrepository.com/artifact/com.alibaba/fastjson --><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>2.0.43</version></dependency>
</dependencies>

2、数据结构

本示例仅仅为实现需求:将订单中uId与用户id进行关联,然后输出Tuple2<Order, String>。

  • 事实流 order
    // 事实表@Data@NoArgsConstructor@AllArgsConstructorstatic class Order {private Integer id;private Integer uId;private Double total;}
  • 维度流 user
    // 维表@Data@NoArgsConstructor@AllArgsConstructorstatic class User {private Integer id;private String name;private Double balance;private Integer age;private String email;}

3、数据源

事实流数据有几种,具体见示例部分,比如socket、redis、kafka等
维度表流有几种,具体见示例部分,比如静态数据、mysql、socket、kafka等。
如此,实现本文中的示例就需要准备好相应的环境,即mysql、redis、kafka、netcat等。

4、验证结果

本文提供的所有示例均为验证通过的示例,测试的数据均在每个示例中,分为事实流、维度流和运行结果进行注释,在具体的示例中关于验证不再赘述。

四、通过广播将维表数据传递到下游

1、说明

利用Flink的Broadcast State将维表数据流广播到下游做join操作。该种方式实现比较方便,完全满足需求,美中不足的是需要充分利用系统的内存,也就是将数据存储在内容中。

更多内容见文章:
53、Flink 的Broadcast State 模式介绍及示例

2、示例:将事实流与维表进行关联-通过Flink 的Broadcast

1)、广播实现

/** @Author: alanchan* @LastEditors: alanchan* @Description: */
package org.tablesql.join;import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.api.common.state.ReadOnlyBroadcastState;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction;
import org.apache.flink.util.Collector;
import org.tablesql.join.TestJoinDimFromBroadcastDataStreamDemo.Order;
import org.tablesql.join.TestJoinDimFromBroadcastDataStreamDemo.User;// final BroadcastProcessFunction<IN1, IN2, OUT> function)
public class JoinBroadcastProcessFunctionImpl extends BroadcastProcessFunction<Order, User, Tuple2<Order, String>> {// 用于存储规则名称与规则本身的 map 存储结构 MapStateDescriptor<Integer, User> broadcastDesc;JoinBroadcastProcessFunctionImpl(MapStateDescriptor<Integer, User> broadcastDesc) {this.broadcastDesc = broadcastDesc;}// 负责处理广播流的元素@Overridepublic void processBroadcastElement(User value,BroadcastProcessFunction<Order, User, Tuple2<Order, String>>.Context ctx,Collector<Tuple2<Order, String>> out) throws Exception {System.out.println("收到广播数据:" + value);// 得到广播流的存储状态ctx.getBroadcastState(broadcastDesc).put(value.getId(), value);}// 处理非广播流,关联维度@Overridepublic void processElement(Order value,BroadcastProcessFunction<Order, User, Tuple2<Order, String>>.ReadOnlyContext ctx,Collector<Tuple2<Order, String>> out) throws Exception {// 得到广播流的存储状态ReadOnlyBroadcastState<Integer, User> state = ctx.getBroadcastState(broadcastDesc);out.collect(new Tuple2<>(value, state.get(value.getUId()).getName()));}
}

2)、实现事实流与维度流join

/** @Author: alanchan* @LastEditors: alanchan* @Description: */
package org.tablesql.join;import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.streaming.api.datastream.BroadcastStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;public class TestJoinDimFromBroadcastDataStreamDemo {// 维表@Data@NoArgsConstructor@AllArgsConstructorstatic class User {private Integer id;private String name;private Double balance;private Integer age;private String email;}// 事实表@Data@NoArgsConstructor@AllArgsConstructorstatic class Order {private Integer id;private Integer uId;private Double total;}public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// order 实时流DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999).map(o -> {String[] lines = o.split(",");return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));});// user 实时流DataStream<User> userDs = env.socketTextStream("192.168.10.42", 8888).map(o -> {String[] lines = o.split(",");return new User(Integer.valueOf(lines[0]), lines[1], Double.valueOf(lines[2]), Integer.valueOf(lines[3]), lines[4]);}).setParallelism(1);// 一个 map descriptor,它描述了用于存储规则名称与规则本身的 map 存储结构// MapStateDescriptor<String, Rule> ruleStateDescriptor = new MapStateDescriptor<>(//         "RulesBroadcastState",//         BasicTypeInfo.STRING_TYPE_INFO,//         TypeInformation.of(new TypeHint<Rule>() {//         }));// 广播流,广播规则并且创建 broadcast state// BroadcastStream<Rule> ruleBroadcastStream = ruleStream.broadcast(ruleStateDescriptor);// 将user流(维表)定义为广播流final MapStateDescriptor<Integer, User> broadcastDesc = new MapStateDescriptor("Alan_RulesBroadcastState",Integer.class,User.class);BroadcastStream<User> broadcastStream = userDs.broadcast(broadcastDesc);// 需要由非广播流来进行调用DataStream result = orderDs.connect(broadcastStream).process(new JoinBroadcastProcessFunctionImpl(broadcastDesc));result.print();// user 流数据(维度表),由于未做容错处理,需要先广播维度数据,否则会出现空指针异常// 1001,alan,18,20,alan.chan.chn@163.com// 1002,alanchan,19,25,alan.chan.chn@163.com// 1003,alanchanchn,20,30,alan.chan.chn@163.com// 1004,alan_chan,27,20,alan.chan.chn@163.com// 1005,alan_chan_chn,36,10,alan.chan.chn@163.com// order 流数据// 16,1002,211// 17,1004,234// 18,1005,175// 控制台输出// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1001, name=alan, balance=18.0, age=20, email=alan.chan.chn@163.com)// ......// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1001, name=alan, balance=18.0, age=20, email=alan.chan.chn@163.com)// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1002, name=alanchan, balance=19.0, age=25, email=alan.chan.chn@163.com)// ......// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1002, name=alanchan, balance=19.0, age=25, email=alan.chan.chn@163.com)// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1003, name=alanchanchn, balance=20.0, age=30, email=alan.chan.chn@163.com)// ......// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1003, name=alanchanchn, balance=20.0, age=30, email=alan.chan.chn@163.com)// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1004, name=alan_chan, balance=27.0, age=20, email=alan.chan.chn@163.com)// ......// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1004, name=alan_chan, balance=27.0, age=20, email=alan.chan.chn@163.com)// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1005, name=alan_chan_chn, balance=36.0, age=10, email=alan.chan.chn@163.com)// ......// 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1005, name=alan_chan_chn, balance=36.0, age=10, email=alan.chan.chn@163.com)// 7> (TestJoinDimFromBroadcastDataStreamDemo.Order(id=16, uId=1002, total=211.0),alanchan)// 8> (TestJoinDimFromBroadcastDataStreamDemo.Order(id=17, uId=1004, total=234.0),alan_chan)// 9> (TestJoinDimFromBroadcastDataStreamDemo.Order(id=18, uId=1005, total=175.0),alan_chan_chn)env.execute();}}

以上,本文是通过Flink的广播方式进行维度表数据进行广播,事实流进行connection。

本专题分为以下几篇文章:
【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据
【flink番外篇】15、Flink维表实战之6种实现方式-维表来源于第三方数据源
【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游
【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)

这篇关于【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/613059

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S