本文主要是介绍动态可视化图表:“城市居民与农民生存大解析!消费指数狂飙,究竟是福是祸?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
地址
https://www.bilibili.com/video/BV1W64y1N7oV/?share_source=copy_web&vd_source=494dad6ec7cce090ffcc05c1b6a83c00
图片
源代码
main.py
import json
import pandas as pd# 此处修改!!!!!!!!!!!!!!!!这里找到配置文件!!!
with open('config/config.json', 'r') as config_file:config = json.load(config_file)# 使用配置信息
file_path = config["file_path"]
num_columns = config["num_columns"]
labels = config["labels"]
years = config["years"]# 读取文件内容
with open(file_path, 'r') as file:lines = file.readlines()# 将每行数据存储到一个列表中
data_list = [float(line.strip()) for line in lines]# 编写1:每行19个数据的形式
formatted_data = [data_list[i:i + num_columns] for i in range(0, len(data_list), num_columns)]# 构建数据结构,按照内容和年份分组
content_data = {label: {year: value for year, value in zip(years, row_data)} for label, row_data inzip(labels, zip(*formatted_data))}# 打印结果
output_data = [["金额", "", "", "名称", "年份"]]for label, year_data in content_data.items():output_data.extend([year_data[year], "", "", label, year] for year in years)# 打印结果,每行最后一个元素后面加逗号
for row in output_data:# 对名称一列加上双引号row[1] = f'"{row[1]}"'row[2] = f'"{row[2]}"'row[3] = f'"{row[3]}"'row_str = ",".join(map(str, row))print(f"[{row_str}],")# 转换为 DataFrame
df = pd.DataFrame(content_data)# 将 DataFrame 写入 Excel 文件
excel_path = 'output/output_excel.xlsx'
df.to_excel(excel_path, index_label="年份")
config.json
{"file_path": "resource/result2.txt","num_columns": 7,"labels": ["居民消费价格指数","城市居民消费价格指数","农村居民消费价格指数","商品售价价格指数","农产品生产者价格指数","工业生产者出山价格指数","工业生产者购进价格指数"],"years": [1990,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022]
}
数据就写在Result2.txt
这篇关于动态可视化图表:“城市居民与农民生存大解析!消费指数狂飙,究竟是福是祸?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!