强化学习11——DQN算法

2024-01-16 05:36
文章标签 算法 学习 强化 dqn

本文主要是介绍强化学习11——DQN算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DQN算法的全称为,Deep Q-Network,即在Q-learning算法的基础上引用深度神经网络来近似动作函数 Q ( s , a ) Q(s,a) Q(s,a) 。对于传统的Q-learning,当状态或动作数量特别大的时候,如处理一张图片,假设为 210 × 160 × 3 210×160×3 210×160×3,共有 25 6 ( 210 × 60 × 3 ) 256^{(210×60×3)} 256(210×60×3)种状态,难以存储,但可以使用参数化的函数 Q θ Q_{\theta} Qθ 来拟合这些数据,即DQN算法。同时DQN还引用了经验回放和目标网络,接下来将以此介绍。

CartPole 环境

image.png

在车杆环境中,通过移动小车,让小车上的杆保持垂直,如果杆的倾斜度数过大或者车子偏离初始位置的距离过大,或者坚持了一定的时间,则结束本轮训练。该智能体的状态是四维向量,每个状态是连续的,但其动作是离散的,动作的工作空间是2。

维度意义最小值最大值
0车的位置-2.42.4
1车的速度-InfInf
2杆的角度~ -41.8°~ 41.8°
3杆尖端的速度-InfInf
标号动作
0向左移动小车
1向右移动小车

深度网络

我们通过神经网络将输入向量 x x x映射到输出向量 y y y,通过下式表示:
y = f θ ( x ) y=f_{\theta}(x) y=fθ(x)
神经网络可以理解为是一个函数,输入输出都是向量,并且拥有可以学习的参数 θ \theta θ ,通过梯度下降等方法,使得神经网络能够逼近任意函数,当然可以用来近似动作价值函数:
y ⃗ = Q θ ( s ⃗ , a ⃗ ) \vec{y}=Q_{\theta}(\vec{s},\vec{a}) y =Qθ(s ,a )
在本环境种,由于状态的每一维度的值都是连续的,无法使用表格记录,因此可以使用一个神经网络表示函数Q。当动作是连续(无限)时,神经网络的输入是状态s和动作a,输出一个标量,表示在状态s下采取动作a能获得的价值。若动作是离散(有限)的,除了采取动作连续情况下的做法,还可以只将状态s输入到神经忘了,输出每一个动作的Q值。

假设使用神经网络拟合w,则每一个状态s下所有可能动作a的Q值为 Q w ( s , a ) Q_w(s,a) Qw(s,a),我们称为Q网络:

image.png

我们在Q-learning种使用下面的方式更新:
Q ( s , a ) ← Q ( s , a ) + α [ r + γ max ⁡ a ′ ∈ A Q ( s ′ , a ′ ) − Q ( s , a ) ] Q(s,a)\leftarrow Q(s,a)+\alpha\left[r+\gamma\max_{a'\in\mathcal{A}}Q(s',a')-Q(s,a)\right] Q(s,a)Q(s,a)+α[r+γaAmaxQ(s,a)Q(s,a)]
即让 Q ( s , a ) Q(s,a) Q(s,a) r + γ max ⁡ a ′ ∈ A Q ( s ′ , a ′ ) r+\gamma\max_{a'\in\mathcal{A}}Q(s',a') r+γmaxaAQ(s,a)靠近,那么Q网络的损失函数为均方误差的形式:
ω ∗ = arg ⁡ min ⁡ ω 1 2 N ∑ i = 1 N [ Q ω ( s i , a i ) − ( r i + γ max ⁡ a ′ Q ω ( s i ′ , a ′ ) ) ] 2 \omega^*=\arg\min_{\omega}\frac{1}{2N}\sum_{i=1}^{N}\left[Q_\omega\left(s_i,a_i\right)-\left(r_i+\gamma\max_{a'}Q_\omega\left(s_i',a'\right)\right)\right]^2 ω=argωmin2N1i=1N[Qω(si,ai)(ri+γamaxQω(si,a))]2

经验回访

将Q-learning过程中,每次从环境中采样得到的四元组数据(状态、动作、奖励、下一状态)存储到回放缓冲区中,之后在训练Q网络时,再从回访缓冲区中,随机采样若干数据进行训练。

image.png

在一般的监督学习中,都是假定训练数据是独立同分布的,而在强化学习中,连续的采样、交互所得到的数据有很强的相关性,这一时刻的状态和上一时刻的状态有关,不满足独立假设。通过在回访缓冲区采样,可以打破样本之间的相关性。另外每一个样本可以使用多次,也适合深度学习。

目标网络

构建两个网络,一个是目标网络,一个是当前网络,二者结构相同,都用于近似Q值。在实践中每隔若干步才把每步更新的当前网络参数复制给目标网络,这样做的好处是保证训练的稳定,当训练的结果不好时,可以不同步当前网络的值,避免Q值的估计发散。

image.png

在计算期望时,使用目标网络来计算:
Q 期望 = [ r t + γ max ⁡ a ′ Q ω ˉ ( s ′ , a ′ ) ] Q_\text{期望}=[r_t+\gamma\max_{a^{\prime}}Q_{\bar{\omega}}(s^{\prime},a^{\prime})] Q期望=[rt+γamaxQωˉ(s,a)]
具体流程如下所示:

  • 使用随机的网络参数 ω \omega ω初始化初始化当前网络 Q ω ( s , a ) Q_{\omega}(s,a) Qω(s,a)
  • 复制相同的参数初始化目标网络 ω ˉ ← ω \bar{\omega}\gets \omega ωˉω
  • 初始化经验回访池R
  • for 序列 e = 1 → E e=1\to E e=1E do
    • 获取环境初始状态 s 1 s_1 s1
    • for 时间步 t = 1 → T 时间步t=1\to T 时间步t=1T do
      • 根据当前网络 Q ω ( s , a ) Q_{\omega}(s,a) Qω(s,a) ϵ − g r e e d y \epsilon -greedy ϵgreedy策略选择动作 a t a_t at
      • 执行动作 a t a_t at,获得回报 r t r_t rt,环境状态变为 s t + 1 s_{t+1} st+1
      • ( s t , a t , r t , s t + 1 ) (s_t,a_t,r_t,s_{t+1}) (st,at,rt,st+1)存储进回池R
      • 若R中数据足够,则从R中采样N个数据 { ( s i , a i , r i , s i + 1 ) } i = 1 , … , N \{(s_i,a_i,r_i,s_{i+1})\}_{i=1,\ldots,N} {(si,ai,ri,si+1)}i=1,,N
      • 对每个数据,用目标网络计算 y = r i + γ max ⁡ a Q ω ˉ ( s i + 1 , a ) y=r_i+\gamma\max_aQ_{\bar{\omega}}(s_{i+1},a) y=ri+γmaxaQωˉ(si+1,a)
      • 最小化目标损失 L = 1 N ∑ i ( y i − Q ω ( s i , a i ) ) 2 L=\frac{1}{N}\sum_{i}(y_{i}-Q_{\omega}(s_{i},a_{i}))^{2} L=N1i(yiQω(si,ai))2,以更新当前网络 Q ω Q_{\omega} Qω
      • 更新目标网络
    • end for
  • end for
import random
from typing import Any
import gymnasium as gym
import numpy as np
import collections
from tqdm import tqdm
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
import rl_utils# 首先定义经验回收池的类,包括加入数据、采样数据
class ReplayBuffer:def __init__(self, capacity):# 创建一个队列,先进先出self.buffer=collections.deque(maxlen=capacity)def add(self,state,action,reward,next_state,done):# 加入数据self.buffer.append((state,action,reward,next_state,done))def sample(self,batch_size):# 随机采样数据mini_batch=random.sample(self.buffer,batch_size)# zip(*)取mini_batch中的每个元素(即取列),并返回一个元组state,action,reward,next_state,done=zip(*mini_batch)return np.array(state), action, reward, np.array(next_state), donedef size(self):return len(self.buffer)# 定义一个只有一层隐藏层的Q网络
class Qnet(torch.nn.Module):def __init__(self,state_dim,hidden_dim,action_dim):super(Qnet,self).__init__()# 定义一个全连接层,输入为state_dim维向量,输出为hidden_dim维向量self.fc1=torch.nn.Linear(state_dim,hidden_dim)# 定义一个全连接层,输入为hidden_dim维向量,输出为action_dim维向量self.fc2=torch.nn.Linear(hidden_dim,action_dim)def forward(self,state):x = F.relu(self.fc1(state))return self.fc2(x)class DQN:def __init__(self,state_dim,hidden_dim,action_dim,learning_rate,gamma,epsilon,target_update,device):self.action_dim=action_dimself.q_net=Qnet(state_dim,hidden_dim,action_dim).to(device)# 目标网络self.target_q_net=Qnet(state_dim,hidden_dim,action_dim).to(device)# 使用Adam优化器self.optimizer=torch.optim.Adam(self.q_net.parameters(),lr=learning_rate)# 折扣因子self.gamma=gamma# 贪婪策略self.epsilon=epsilon# 目标网络更新频率self.target_update=target_update# 计数器self.count=0self.device=devicedef take_action(self,state):# 判断是否需要贪婪策略if np.random.random()<self.epsilon:action=np.random.randint(self.action_dim)else:state=torch.tensor([state],dtype=torch.float).to(self.device)action=self.q_net(state).argmax().item()return actiondef update(self,transition_dict):states = torch.tensor(transition_dict['states'],dtype=torch.float).to(self.device)actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(self.device)rewards = torch.tensor(transition_dict['rewards'],dtype=torch.float).view(-1, 1).to(self.device)next_states = torch.tensor(transition_dict['next_states'],dtype=torch.float).to(self.device)dones = torch.tensor(transition_dict['dones'],dtype=torch.float).view(-1, 1).to(self.device)# Q值q_values=self.q_net(states).gather(1,actions)# 下一个状态的最大Q值max_next_q_values=self.target_q_net(next_states).max(1)[0].view(-1, 1)q_targets=rewards+self.gamma*max_next_q_values*(1-dones)# 反向传播更新参数dqn_loss=torch.mean(F.mse_loss(q_values, q_targets)) # 均方误差损失函数self.optimizer.zero_grad()dqn_loss.backward()self.optimizer.step()if self.count % self.target_update == 0:self.target_q_net.load_state_dict(self.q_net.state_dict())  # 更新目标网络self.count += 1lr = 2e-3
num_episodes = 500
hidden_dim = 128
gamma = 0.98
epsilon = 0.01
target_update = 10
buffer_size = 10000
minimal_size = 500
batch_size = 64
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")env_name = 'CartPole-v0'
env = gym.make(env_name)
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
replay_buffer = ReplayBuffer(buffer_size)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = DQN(state_dim, hidden_dim, action_dim, lr, gamma, epsilon,target_update, device)return_list = []
for i in range(10):with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:for i_episode in range(int(num_episodes / 10)):episode_return = 0state = env.reset()[0]aa=state[0]print(state)done = Falsewhile not done:action = agent.take_action(state)next_state, reward, done,info, _ = env.step(action)replay_buffer.add(state, action, reward, next_state, done)state = next_stateepisode_return += reward# 当buffer数据的数量超过一定值后,才进行Q网络训练if replay_buffer.size() > minimal_size:b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size)transition_dict = {'states': b_s,'actions': b_a,'next_states': b_ns,'rewards': b_r,'dones': b_d}agent.update(transition_dict)return_list.append(episode_return)if (i_episode + 1) % 10 == 0:pbar.set_postfix({'episode':'%d' % (num_episodes / 10 * i + i_episode + 1),'return':'%.3f' % np.mean(return_list[-10:])})pbar.update(1)

image.png

这篇关于强化学习11——DQN算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611475

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖