强化学习11——DQN算法

2024-01-16 05:36
文章标签 算法 学习 强化 dqn

本文主要是介绍强化学习11——DQN算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DQN算法的全称为,Deep Q-Network,即在Q-learning算法的基础上引用深度神经网络来近似动作函数 Q ( s , a ) Q(s,a) Q(s,a) 。对于传统的Q-learning,当状态或动作数量特别大的时候,如处理一张图片,假设为 210 × 160 × 3 210×160×3 210×160×3,共有 25 6 ( 210 × 60 × 3 ) 256^{(210×60×3)} 256(210×60×3)种状态,难以存储,但可以使用参数化的函数 Q θ Q_{\theta} Qθ 来拟合这些数据,即DQN算法。同时DQN还引用了经验回放和目标网络,接下来将以此介绍。

CartPole 环境

image.png

在车杆环境中,通过移动小车,让小车上的杆保持垂直,如果杆的倾斜度数过大或者车子偏离初始位置的距离过大,或者坚持了一定的时间,则结束本轮训练。该智能体的状态是四维向量,每个状态是连续的,但其动作是离散的,动作的工作空间是2。

维度意义最小值最大值
0车的位置-2.42.4
1车的速度-InfInf
2杆的角度~ -41.8°~ 41.8°
3杆尖端的速度-InfInf
标号动作
0向左移动小车
1向右移动小车

深度网络

我们通过神经网络将输入向量 x x x映射到输出向量 y y y,通过下式表示:
y = f θ ( x ) y=f_{\theta}(x) y=fθ(x)
神经网络可以理解为是一个函数,输入输出都是向量,并且拥有可以学习的参数 θ \theta θ ,通过梯度下降等方法,使得神经网络能够逼近任意函数,当然可以用来近似动作价值函数:
y ⃗ = Q θ ( s ⃗ , a ⃗ ) \vec{y}=Q_{\theta}(\vec{s},\vec{a}) y =Qθ(s ,a )
在本环境种,由于状态的每一维度的值都是连续的,无法使用表格记录,因此可以使用一个神经网络表示函数Q。当动作是连续(无限)时,神经网络的输入是状态s和动作a,输出一个标量,表示在状态s下采取动作a能获得的价值。若动作是离散(有限)的,除了采取动作连续情况下的做法,还可以只将状态s输入到神经忘了,输出每一个动作的Q值。

假设使用神经网络拟合w,则每一个状态s下所有可能动作a的Q值为 Q w ( s , a ) Q_w(s,a) Qw(s,a),我们称为Q网络:

image.png

我们在Q-learning种使用下面的方式更新:
Q ( s , a ) ← Q ( s , a ) + α [ r + γ max ⁡ a ′ ∈ A Q ( s ′ , a ′ ) − Q ( s , a ) ] Q(s,a)\leftarrow Q(s,a)+\alpha\left[r+\gamma\max_{a'\in\mathcal{A}}Q(s',a')-Q(s,a)\right] Q(s,a)Q(s,a)+α[r+γaAmaxQ(s,a)Q(s,a)]
即让 Q ( s , a ) Q(s,a) Q(s,a) r + γ max ⁡ a ′ ∈ A Q ( s ′ , a ′ ) r+\gamma\max_{a'\in\mathcal{A}}Q(s',a') r+γmaxaAQ(s,a)靠近,那么Q网络的损失函数为均方误差的形式:
ω ∗ = arg ⁡ min ⁡ ω 1 2 N ∑ i = 1 N [ Q ω ( s i , a i ) − ( r i + γ max ⁡ a ′ Q ω ( s i ′ , a ′ ) ) ] 2 \omega^*=\arg\min_{\omega}\frac{1}{2N}\sum_{i=1}^{N}\left[Q_\omega\left(s_i,a_i\right)-\left(r_i+\gamma\max_{a'}Q_\omega\left(s_i',a'\right)\right)\right]^2 ω=argωmin2N1i=1N[Qω(si,ai)(ri+γamaxQω(si,a))]2

经验回访

将Q-learning过程中,每次从环境中采样得到的四元组数据(状态、动作、奖励、下一状态)存储到回放缓冲区中,之后在训练Q网络时,再从回访缓冲区中,随机采样若干数据进行训练。

image.png

在一般的监督学习中,都是假定训练数据是独立同分布的,而在强化学习中,连续的采样、交互所得到的数据有很强的相关性,这一时刻的状态和上一时刻的状态有关,不满足独立假设。通过在回访缓冲区采样,可以打破样本之间的相关性。另外每一个样本可以使用多次,也适合深度学习。

目标网络

构建两个网络,一个是目标网络,一个是当前网络,二者结构相同,都用于近似Q值。在实践中每隔若干步才把每步更新的当前网络参数复制给目标网络,这样做的好处是保证训练的稳定,当训练的结果不好时,可以不同步当前网络的值,避免Q值的估计发散。

image.png

在计算期望时,使用目标网络来计算:
Q 期望 = [ r t + γ max ⁡ a ′ Q ω ˉ ( s ′ , a ′ ) ] Q_\text{期望}=[r_t+\gamma\max_{a^{\prime}}Q_{\bar{\omega}}(s^{\prime},a^{\prime})] Q期望=[rt+γamaxQωˉ(s,a)]
具体流程如下所示:

  • 使用随机的网络参数 ω \omega ω初始化初始化当前网络 Q ω ( s , a ) Q_{\omega}(s,a) Qω(s,a)
  • 复制相同的参数初始化目标网络 ω ˉ ← ω \bar{\omega}\gets \omega ωˉω
  • 初始化经验回访池R
  • for 序列 e = 1 → E e=1\to E e=1E do
    • 获取环境初始状态 s 1 s_1 s1
    • for 时间步 t = 1 → T 时间步t=1\to T 时间步t=1T do
      • 根据当前网络 Q ω ( s , a ) Q_{\omega}(s,a) Qω(s,a) ϵ − g r e e d y \epsilon -greedy ϵgreedy策略选择动作 a t a_t at
      • 执行动作 a t a_t at,获得回报 r t r_t rt,环境状态变为 s t + 1 s_{t+1} st+1
      • ( s t , a t , r t , s t + 1 ) (s_t,a_t,r_t,s_{t+1}) (st,at,rt,st+1)存储进回池R
      • 若R中数据足够,则从R中采样N个数据 { ( s i , a i , r i , s i + 1 ) } i = 1 , … , N \{(s_i,a_i,r_i,s_{i+1})\}_{i=1,\ldots,N} {(si,ai,ri,si+1)}i=1,,N
      • 对每个数据,用目标网络计算 y = r i + γ max ⁡ a Q ω ˉ ( s i + 1 , a ) y=r_i+\gamma\max_aQ_{\bar{\omega}}(s_{i+1},a) y=ri+γmaxaQωˉ(si+1,a)
      • 最小化目标损失 L = 1 N ∑ i ( y i − Q ω ( s i , a i ) ) 2 L=\frac{1}{N}\sum_{i}(y_{i}-Q_{\omega}(s_{i},a_{i}))^{2} L=N1i(yiQω(si,ai))2,以更新当前网络 Q ω Q_{\omega} Qω
      • 更新目标网络
    • end for
  • end for
import random
from typing import Any
import gymnasium as gym
import numpy as np
import collections
from tqdm import tqdm
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
import rl_utils# 首先定义经验回收池的类,包括加入数据、采样数据
class ReplayBuffer:def __init__(self, capacity):# 创建一个队列,先进先出self.buffer=collections.deque(maxlen=capacity)def add(self,state,action,reward,next_state,done):# 加入数据self.buffer.append((state,action,reward,next_state,done))def sample(self,batch_size):# 随机采样数据mini_batch=random.sample(self.buffer,batch_size)# zip(*)取mini_batch中的每个元素(即取列),并返回一个元组state,action,reward,next_state,done=zip(*mini_batch)return np.array(state), action, reward, np.array(next_state), donedef size(self):return len(self.buffer)# 定义一个只有一层隐藏层的Q网络
class Qnet(torch.nn.Module):def __init__(self,state_dim,hidden_dim,action_dim):super(Qnet,self).__init__()# 定义一个全连接层,输入为state_dim维向量,输出为hidden_dim维向量self.fc1=torch.nn.Linear(state_dim,hidden_dim)# 定义一个全连接层,输入为hidden_dim维向量,输出为action_dim维向量self.fc2=torch.nn.Linear(hidden_dim,action_dim)def forward(self,state):x = F.relu(self.fc1(state))return self.fc2(x)class DQN:def __init__(self,state_dim,hidden_dim,action_dim,learning_rate,gamma,epsilon,target_update,device):self.action_dim=action_dimself.q_net=Qnet(state_dim,hidden_dim,action_dim).to(device)# 目标网络self.target_q_net=Qnet(state_dim,hidden_dim,action_dim).to(device)# 使用Adam优化器self.optimizer=torch.optim.Adam(self.q_net.parameters(),lr=learning_rate)# 折扣因子self.gamma=gamma# 贪婪策略self.epsilon=epsilon# 目标网络更新频率self.target_update=target_update# 计数器self.count=0self.device=devicedef take_action(self,state):# 判断是否需要贪婪策略if np.random.random()<self.epsilon:action=np.random.randint(self.action_dim)else:state=torch.tensor([state],dtype=torch.float).to(self.device)action=self.q_net(state).argmax().item()return actiondef update(self,transition_dict):states = torch.tensor(transition_dict['states'],dtype=torch.float).to(self.device)actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(self.device)rewards = torch.tensor(transition_dict['rewards'],dtype=torch.float).view(-1, 1).to(self.device)next_states = torch.tensor(transition_dict['next_states'],dtype=torch.float).to(self.device)dones = torch.tensor(transition_dict['dones'],dtype=torch.float).view(-1, 1).to(self.device)# Q值q_values=self.q_net(states).gather(1,actions)# 下一个状态的最大Q值max_next_q_values=self.target_q_net(next_states).max(1)[0].view(-1, 1)q_targets=rewards+self.gamma*max_next_q_values*(1-dones)# 反向传播更新参数dqn_loss=torch.mean(F.mse_loss(q_values, q_targets)) # 均方误差损失函数self.optimizer.zero_grad()dqn_loss.backward()self.optimizer.step()if self.count % self.target_update == 0:self.target_q_net.load_state_dict(self.q_net.state_dict())  # 更新目标网络self.count += 1lr = 2e-3
num_episodes = 500
hidden_dim = 128
gamma = 0.98
epsilon = 0.01
target_update = 10
buffer_size = 10000
minimal_size = 500
batch_size = 64
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")env_name = 'CartPole-v0'
env = gym.make(env_name)
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
replay_buffer = ReplayBuffer(buffer_size)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = DQN(state_dim, hidden_dim, action_dim, lr, gamma, epsilon,target_update, device)return_list = []
for i in range(10):with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:for i_episode in range(int(num_episodes / 10)):episode_return = 0state = env.reset()[0]aa=state[0]print(state)done = Falsewhile not done:action = agent.take_action(state)next_state, reward, done,info, _ = env.step(action)replay_buffer.add(state, action, reward, next_state, done)state = next_stateepisode_return += reward# 当buffer数据的数量超过一定值后,才进行Q网络训练if replay_buffer.size() > minimal_size:b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size)transition_dict = {'states': b_s,'actions': b_a,'next_states': b_ns,'rewards': b_r,'dones': b_d}agent.update(transition_dict)return_list.append(episode_return)if (i_episode + 1) % 10 == 0:pbar.set_postfix({'episode':'%d' % (num_episodes / 10 * i + i_episode + 1),'return':'%.3f' % np.mean(return_list[-10:])})pbar.update(1)

image.png

这篇关于强化学习11——DQN算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611475

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert