2.1.2 一个关于y=ax+b的故事

2024-01-15 23:04
文章标签 故事 2.1 ax

本文主要是介绍2.1.2 一个关于y=ax+b的故事,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

跳转到根目录:知行合一:投资篇

已完成:
1、投资&技术
  1.1.1 投资-编程基础-numpy
  1.1.2 投资-编程基础-pandas
  1.2 金融数据处理
  1.3 金融数据可视化
2、投资方法论
  2.1.1 预期年化收益率
  2.1.2 一个关于y=ax+b的故事
3、投资实证
  [3.1 2023这一年] 被鸽

文章目录

  • 1. 系统自己画!最佳拟合线
    • 1.1. 沪深300的最佳拟合线
    • 1.2. 横向对比:一个个算
    • 1.3. 横向对比:数据标准化
    • 1.4. 看图说话
  • 2. 系统自己算!线性回归
    • 2.1. 沪深300线性回归,斜率0.00099414
    • 2.2. 沪深300线性回归的年化,年化8.5%
    • 2.3. 沪深300首尾点的年化,4.72%
    • 2.4. 中证500线性回归,斜率0.0008
    • 2.5. 中证500线性回归的年化
    • 2.6. 中证500首尾点的年化
  • 3. 总结

当看到一个在k线图上画直线的时候,斜率是可以自动计算的吗?

最佳拟合的直线,计算出来的斜率是多少?最佳拟合直线代表的年化是多少?

1. 系统自己画!最佳拟合线

1.1. 沪深300的最佳拟合线

顾名思义,这就是对于散点图,画一条最佳拟合的直线。那什么又叫最佳拟合线?

最佳拟合直线是指,我们可以找到一条直线,样本点到该直线的[离差平方和]达到最小的直线。这条直线用公式y = ax + b表示。

a表示回归系数,b表示截距。

再简单的说,就是存在一条线,这条线,能让各个点,都比较“满意”地分布在其上下。

我们拿沪深300的历史收盘价作为散点图,来看看其所谓的最佳拟合线是什么样的。

import qstock as qs
import seaborn as sns
import numpy as npsh300=qs.get_data('510300')
# 因为设想中,x轴,可以是一个顺序的数组,比如从0开始往后数,step为1。这其实就是暗合着,随着时间的增加,close是否能拟合一条向上的直线?
sh300['day'] = np.arange(0, sh300.shape[0], 1)sns.set_style("white")
gridobj = sns.lmplot(x="day", y="close", data=sh300, ci=95, scatter_kws={'color': 'orange'}, line_kws={'color': 'green'}, markers='o')

1.2. 横向对比:一个个算

看过了沪深300,肯定会有疑惑啊,总是要横向对比的吧?比如沪深300和中证500、券商ETF、红利ETF、房地产ETF、黄金ETF等标的,能进行横向对比来看谁的斜率(赚钱效应)更好吗?

Of course ,动手!

import qstock as qs
import seaborn as sns
import numpy as npstocks_info = [{'code': '510300', 'name': '沪深300'},{'code': '510500', 'name': '中证500'},{'code': '512010', 'name': '医药ETF'},{'code': '512000', 'name': '券商ETF'},{'code': '516160', 'name': '新能源ETF'},{'code': '510800', 'name': '红利ETF'},{'code': '518880', 'name': '黄金ETF'},{'code': '512200', 'name': '房地产ETF'}
]
for stock in stocks_info:df=qs.get_data(stock['code'])# 因为设想中,x轴,可以是一个顺序的数组,比如从0开始往后数,step为1。这其实就是暗合着,随着时间的增加,close是否能拟合一条向上的直线?df['day'] = np.arange(0, df.shape[0], 1)df['标的'] = stock['name']sns.set_style("white")# 这个是seaborn中文乱码的处理。经过试验,在这里,plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'],这种设置是不行的。sns.set_style(rc= {'font.sans-serif':"Arial Unicode MS"})gridobj = sns.lmplot(x="day", y="close", data=df,  hue="标的", ci=95, scatter_kws={'color': 'orange'}, line_kws={'color': 'green'}, markers='o')

这里要说明一下,上面其实是一个个图生成的,然后我一张张图拼接起来的结果。

如果想直接横向着来看,还需要对数据进行标准化处理,如果不进行标准化,那比如不同标的的收盘价,差异很大,有的是十几块,像ETF,可能就是1块,那结果就很难看,就像下面这种:

1.3. 横向对比:数据标准化

所以,下面就是要将不同的标的进行标准化处理,这种标准化,意味着,将价格进行处理变成相对值,才可以进行比较,这里使用的是sklearn模块的StandardScaler,核心方法是fit_transform(df_all)。如果没有安装sklearn,需要先进行安装pip install -U scikit-learn

下面是一个完整的案例:

import qstock as qs
import pandas as pd#默认日频率、前复权所有历史数据
#open:开盘价,high:最高价,low:最低价,close:收盘价 vol:成交量,turnover:成交金额,turnover_rate:换手率
# 沪深300, 中证500, 医药ETF, 券商ETF, 新能源ETF, 红利ETF, 黄金ETF, 房地产ETF
stocks_info = [{'code': '510300', 'name': '沪深300'},{'code': '510500', 'name': '中证500'},{'code': '512010', 'name': '医药ETF'},{'code': '512000', 'name': '券商ETF'},{'code': '516160', 'name': '新能源ETF'},{'code': '510800', 'name': '红利ETF'},{'code': '518880', 'name': '黄金ETF'},{'code': '512200', 'name': '房地产ETF'}
]
for stock in stocks_info:df = qs.get_data(stock['code'])  # 从qstock获取对应的股票历史数据stock['history_df'] = df         # 将其存在 history_df 这个key里面。# 只保留收盘价,合并数据
df_all = pd.DataFrame()
for stock in stocks_info:df = stock['history_df']df = df[['close']]         # 只需要 date 和 close 2列就行了。df.rename(columns={'close': stock['name']}, inplace=True)  # 用股票的名字来重命名close列if df_all.size == 0:df_all = dfelse:df_all = df_all.join(df)  # join是按照index来连接的。# print(df_all)# 对dataframe的数据进行标准化处理
import sklearn
from sklearn import preprocessing
z_scaler = preprocessing.StandardScaler()   # 建立 StandardScaler 对象
z_data = z_scaler.fit_transform(df_all) #数据标准化(从第三列开始)
z_data = pd.DataFrame(z_data)                           #将数据转为Dataframe
z_data.columns = df_all.columns
df_all = z_data
print(df_all)# 只保留收盘价,合并数据
df_new = pd.DataFrame()
for stock in stocks_info:df = df_all[[stock['name']]]df.columns = ['close']df['标的'] = stock['name']if df_new.size == 0:df_new = dfelse:df_new = pd.concat([df_new, df], axis=0)print(df_new)
df_new['day'] = df_new.index# 这个是seaborn中文乱码的处理。经过试验,在这里,plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'],这种设置是不行的。
sns.set_style(rc= {'font.sans-serif':"Arial Unicode MS"})
df = sns.lmplot(x="day", y="close",data=df_new,col="标的")

         close      标的
0    -1.316309   沪深300
1    -1.275999   沪深300
2    -1.284061   沪深300
3    -1.290107   沪深300
4    -1.290107   沪深300
...        ...     ...
2826 -2.711143  房地产ETF
2827 -2.684416  房地产ETF
2828 -2.702234  房地产ETF
2829 -2.666598  房地产ETF
2830 -2.675507  房地产ETF[22648 rows x 2 columns]

1.4. 看图说话

从上面的横向对比图可以看出:

  1. 沪深300的斜率,是高于中证500的
  2. 券商ETF,基本是一条横线,说明什么?做T啊,稳赚不赔!
  3. 新能源ETF、房地产ETF,可能是时间还太短,所处的周期内,就是向下的。
  4. 其他的,黄金看的是长周期,可能是几十年,还是慎重为好;红利,说不好,不懂的就先不碰了。

2. 系统自己算!线性回归

2.1. 沪深300线性回归,斜率0.00099414

首先从 sklearn 下的 linear_model 中引入 LinearRegression,再创建估计器起名 model,设置超参数 normalize 为 True,指的在每个特征值上做标准化,这样会加速数值运算。(可能是版本不同,有时候会报错LinearRegression got an unexpected keyword argument 'normalize',此时反而要去掉normalize=True这个参数。)

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegressiondf=qs.get_data('510300')model = LinearRegression()
model
x = np.arange(df.shape[0])
y = df['close']X = x[:, np.newaxis]
model.fit( X, y )print( model.coef_ )  # 斜率 0.00099414,就是y=ax+b的a
print( model.intercept_ )  # 截距 1.9,就是y=ax+b的b# 根据上面计算的结果,我们绘制一个收盘价走势图和一条y=ax=b的直线
plt.plot( x, y,  linestyle='-', color='green' )
plt.plot(x, 0.00099414*x + 1.9, linestyle='--', color='r')  # 这个是根据最后计算的“斜率”和“截距”,再叠加绘制的斜线

2.2. 沪深300线性回归的年化,年化8.5%

之前计算的沪深300最佳拟合的直线,斜率和截距:

plt.plot(x, 0.00099414*x + 1.9, linestyle='--', color='r')  # 这个是根据最后计算的“斜率”和“截距”,再叠加绘制的斜线

沪深300,如果按照上面的直线来看,那:

起始点:1.9

终点:y=ax+b,即y=0.00099414*x + 1.9,最后的x,其实是x轴的个数,是:df.shape[0],也就是行数:x=2832;那么计算的y = 0.00099414 * 2832 + 1.9 = 4.71540448

按照上面的计算:

import mathbegin = 1.9
end = 4.71540448
year = 2832/255.0# 年化收益率计算
rate = math.pow(end / begin, 1.0 / year) - 1
print('开始价=%s, 最终价=%s, year=%s,年化收益率=%s' % (str(begin), str(end), str(year), str(rate)))开始价=1.9, 最终价=4.71540448, year=11.105882352941176,年化收益率=0.0852895190354479

2.3. 沪深300首尾点的年化,4.72%

如果不考虑中间的波动,那沪深300的年化收益率计算:

import pandas as pd
import mathdf=qs.get_data('510300')begin = df['close'][0]
end = df['close'][-1]
year = df.shape[0]/255.0# 年化收益率计算
rate = math.pow(end / begin, 1.0 / year) - 1
print('开始价=%s, 最终价=%s, year=%s,年化收益率=%s' % (str(begin), str(end), str(year), str(rate)))开始价=2.004, 最终价=3.345, year=11.105882352941176,年化收益率=0.047211214375309396

2.4. 中证500线性回归,斜率0.0008

对比看下中证500斜率如何

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegressiondf=qs.get_data('510500')model = LinearRegression()
model
x = np.arange(df.shape[0])
y = df['close']X = x[:, np.newaxis]
model.fit( X, y )print( model.coef_ )  # 斜率 0.00080245,就是y=ax+b的a
print( model.intercept_ )  # 截距 4.353948387096773,就是y=ax+b的b# 根据上面计算的结果,我们绘制一个收盘价走势图和一条y=ax=b的直线
plt.plot( x, y,  linestyle='-', color='green' )
plt.plot(x, 0.00080245*x + 4.353948387096773, linestyle='--', color='r')  # 这个是根据最后计算的“斜率”和“截距”,再叠加绘制的斜线

2.5. 中证500线性回归的年化

计算中证500最佳拟合的直线,斜率和截距:

plt.plot(x, 0.00080245*x + 4.353948387096773, linestyle='--', color='r')  # 这个是根据最后计算的“斜率”和“截距”,再叠加绘制的斜线

起始点:4.353948387096773

终点:y=ax+b,即y=0.00080245*x + 4.353948387096773,最后的x,其实是x轴的个数,是:df.shape[0],也就是行数:x=2635;那么计算的y = 0.00080245 * 2635 + 4.353948387096773 = 6.468404137096773

按照上面的计算:

import mathbegin = 4.353948387096773
end = 6.468404137096773
year = 2635/255.0# 年化收益率计算
rate = math.pow(end / begin, 1.0 / year) - 1
print('开始价=%s, 最终价=%s, year=%s,年化收益率=%s' % (str(begin), str(end), str(year), str(rate)))开始价=4.353948387096773, 最终价=6.468404137096773, year=10.333333333333334,年化收益率=0.039050907738202856

2.6. 中证500首尾点的年化

中证500年化收益率:

import pandas as pd
import mathdf=qs.get_data('510500')begin = df['close'][0]
end = df['close'][-1]
year = df.shape[0]/255.0# 年化收益率计算
rate = math.pow(end / begin, 1.0 / year) - 1
print('开始价=%s, 最终价=%s, year=%s,年化收益率=%s' % (str(begin), str(end), str(year), str(rate)))开始价=3.021, 最终价=5.279, year=10.333333333333334,年化收益率=0.055499799550948525

3. 总结

如果用最佳拟合直线,那么沪深300的年化是8.5%,中证500的年化是3.9%

如果是按照收盘价的首尾点来计算,那么沪深300的年化是4.72%,中证500的年化是5.55%

为什么最佳拟合直线和首尾点计算的年化差异这么大?还是因为今天2024年1月15日,收盘价跟最佳拟合直线的差距很大,自然会有很大的偏差,如果哪天能所谓的“价值回归”或是就应该是这个价,那2者会慢慢合理起来。

波动很大,但是最终的结果,还是能达到5%左右的年化收益率。

这篇关于2.1.2 一个关于y=ax+b的故事的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610487

相关文章

【2.1 深度学习中的感知机是什么】

2.1 深度学习中的感知机是什么 深度学习是机器学习的一个分支,它模拟人脑的工作方式来处理数据,尤其是通过神经网络的结构来自动提取数据的特征并进行分类、回归或其他复杂的任务。在深度学习的早期发展中,许多基础概念和模型为后续的复杂网络奠定了基础。其中,**感知机(Perceptron)**是一个非常重要的基础模型,它实际上是神经网络和深度学习的前身之一。 感知机的基本概念 感知机是一种二分

【AI大模型应用开发】2.1 Function Calling连接外部世界 - 入门与实战(1)

Function Calling是大模型连接外部世界的通道,目前出现的插件(Plugins )、OpenAI的Actions、各个大模型平台中出现的tools工具集,其实都是Function Calling的范畴。时下大火的OpenAI的GPTs,原理就是使用了Function Calling,例如联网检索、code interpreter。 本文带大家了解下Function calling,看

接下来的这个故事就来自于我的先生,一个交警的口述

这可是没有过的事情。先生是个交通警察,在事故科工作已经五、六年了,对于生离死别、阴阳两隔,用他自己的话说是已经有些麻木了;不用说他,就连我,对那些卷宗里血淋淋的照片都已经有些漠然。他的办公室常有悲悲切切的人来哭诉,他却总能在复议时做到不掺杂感情。我是个爱哭的女人,偏偏先生对于眼泪早已有了职业的免疫力,他说要是每个事故他都要为每个逝者陪眼泪的话,他早就活不下去了,但是今天不同,他分明是掉过泪了。

JD 1204:农夫、羊、菜和狼的故事

OJ题目:click here~~ #define vegetable_go 0#define vegetable_come 1#define sheep_go 2#define sheep_come 3#define wolf_go 4#define wolf_come 5#define nothing_go 6#define nothing_come 7using

2.1ceph集群部署准备-硬件及拓扑

硬件配置及建议 时至今日,ceph可以运行在各种各样的硬件平台上,不管是传统的x86架构平台(intel 至强系列、基于amd的海光系列等),还是基于arm的架构平台(比如华为鲲鹏),都可以完美运行ceph集群,展现了其强大的适应能力。 ceph的不同组件对硬件的需求有些许不同,下面是官方推荐的硬件要求: 组件资源最低配置要求OSD处理器最少1 core每200-500 MB/s最少1 co

2020年数据术语的故事

点击上方蓝色字体,选择“设为星标” 回复”资源“获取更多资源 2020年整个技术圈子要说话题最多的,应该是大数据方向。新感念层出不穷,数据湖概念就是其中之一。这篇文章是关于数据仓库、数据湖、数据集市、数据中台等一些列的概念和发展进程。希望给大家带来一个全面的感知。 本文作者:Murkey学习之旅、开心自由天使 本文整理:大数据技术与架构,未经允许不得转载。 如今,随着诸如互联网以及物联网等

PMP–一、二、三模–分类–14.敏捷–技巧–故事点

文章目录 技巧一模14.敏捷--术语表-自组织团队--自组织团队是一种跨职能团队,其中为实现团队目标团队成员根据需要轮换着发挥领导作用。 自组织团队的核心就是做什么事情,团队成员说了算。61、 [单选] 作为估算活动持续时间过程的一部分,项目经理促成了与产品负责人和Scrum团队的冲刺计划会议。项目经理将用户故事分解为较小的任务项,以小时为单位估算所需时间,并根据团队的能力确定冲刺待办事项列

解决ax+by=c,不定方程(扩展欧几里得)

首先有几个定理我们需要知道,在这里我也会一一证明。 —————————————————————————————————————— 定理1:gcd(a,b)==gcd(b,a%b);这个是欧几里得提出并证明的。 (%是取余的意思,在数学中 可用mod表示); 以下是证明过程 —————————————————————————————————————— 令a = k * b + r; (k

王楠首次讲述Cocos Creator背后的故事

Cocos Creator发布至今,得到了许多开发者的支持和喜爱,甚至有小伙伴留言说:幸福来得太突然。水滴石穿,非一日之功。这款工具从诞生到问世究竟经历了怎么样的曲折,未来又会走向何方?这方面,大概没有谁比Cocos Creator制作人王楠更有发言权了。   今天不妨抽出10分钟,听听王楠的讲述,相信或多或少会对你有所启发。   开发Cocos Creator的初衷是什么?   我和几

不得不服的华为管理:任正非给员工讲的18个故事

不得不服的华为管理:任正非给员工讲的18个故事 电商报2016年02月19日07:21 我要分享 [摘要]华为用“灰度”的思想指导各项实践,“灰度”思想是华为成功的重要法宝。 腾讯科技精选优质自媒体文章,文中所述为作者独立观点,不代表腾讯科技立场。 (微信公众号:电商报) 1、红舞鞋 这是安徒生一个流传甚广的童话故事: 有一双非常漂亮、非常吸引人的红色的舞鞋,女孩若把它穿在脚上