【ZOJ3940 The 13th Zhejiang Provincial Collegiate Programming ContestE】【脑洞 STL-MAP 复杂度分析 区间运算思想 双指针】M

本文主要是介绍【ZOJ3940 The 13th Zhejiang Provincial Collegiate Programming ContestE】【脑洞 STL-MAP 复杂度分析 区间运算思想 双指针】M,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Modulo Query

Time Limit: 2 Seconds      Memory Limit: 65536 KB

One day, Peter came across a function which looks like:

  • F(1, X) = X mod A1.
  • F(i, X) = F(i - 1, X) mod Ai, 2 ≤ iN.
Where A is an integer array of length N, X is a non-negative integer no greater than M.

Peter wants to know the number of solutions for equation F(N, X) = Y, where Y is a given number.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integers N and M (2 ≤ N ≤ 105, 0 ≤ M ≤ 109).

The second line contains N integers: A1, A2, ..., AN (1 ≤ Ai ≤ 109).

The third line contains an integer Q (1 ≤ Q ≤ 105) - the number of queries. Each of the following Q lines contains an integer Yi (0 ≤ Yi ≤ 109), which means Peter wants to know the number of solutions for equation F(N, X) = Yi.

Output

For each test cases, output an integer S = (1 ⋅ Z1 + 2 ⋅ Z2 + ... + QZQ) mod (109 + 7), where Zi is the answer for the i-th query.

Sample Input
1
3 5
3 2 4
5
0
1
2
3
4
Sample Output
8
Hint

The answer for each query is: 4, 2, 0, 0, 0.


Author: LIN, Xi

Source: The 13th Zhejiang Provincial Collegiate Programming Contest


#include<stdio.h> 
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; }
const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f;
int casenum, casei;
int n, m, q;
map<int, int>mop;
map<int, int>::iterator it;
pair<int, int>a[N];
int main()
{scanf("%d", &casenum);for (casei = 1; casei <= casenum; ++casei){mop.clear();scanf("%d%d", &n, &m);mop[m + 1] = 1;for (int i = 1; i <= n; ++i){int x; scanf("%d", &x);while(1){it = mop.upper_bound(x);if (it == mop.end())break;mop[x] += it->first / x * it->second;if(it->first%x)mop[it->first%x] += it->second;mop.erase(it);}}int sum = 0;for (it = mop.begin(); it != mop.end(); ++it)sum += it->second;scanf("%d", &q);for (int i = 1; i <= q; ++i)scanf("%d", &a[i].first), a[i].second = i;sort(a + 1, a + q + 1);it = mop.begin();int ans = 0;for (int i = 1; i <= q; ++i){while (a[i].first >= it->first){sum -= it->second;++it;if (it == mop.end())break;}if (it == mop.end())break;ans = (ans + (LL)sum * a[i].second) % Z;}printf("%d\n", ans);}return 0;
}
/*
【题意】
有n(1e5)个数字a[](1e9),我们有q(1e5)个询问。
对于每个询问,想问你——有多少个[0,m](m∈[0,1e9])范围的数,满足其mod a[1] mod a[2] mod a[3] mod ... mod a[n]== b[i]
(b[]是1e9范围的数)【类型】
暴力
复杂度分析【分析】
这道题的关键之处,在于要想到——
取模不仅仅是一个数可以取模,一个区间我们也可以做取模处理。
进一步我们发现,取模得到的区间左界必然都为0
一个区间[0,r)的数 mod a[i],
如果r>a[i],那么——
这个区间会变成r/a[i]个[0,a[i])的区间,以及一个[0,r%a[i])的区间这样,我们对于每个a[i],我们就把所有>a[i]的区间都做处理。
在所有处理都完成之后,我们可以用双指针的方式处理所有询问的答案【时间复杂度&&优化】
O(nlognlogn)
这题的复杂度为什么是这样子呢?对于一个数,这个数做连续若干次的取模运算, 数值变化次数不会超过logn次。
于是我们以区间做取模运算,数值变化次数不会超过nlogn次。
然后加上map的复杂度,总的复杂度不过nlognlogn,可以无压力AC之。*/


这篇关于【ZOJ3940 The 13th Zhejiang Provincial Collegiate Programming ContestE】【脑洞 STL-MAP 复杂度分析 区间运算思想 双指针】M的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610384

相关文章

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

hdu4267区间统计

题意:给一些数,有两种操作,一种是在[a,b] 区间内,对(i - a)% k == 0 的加value,另一种操作是询问某个位置的值。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import

hdu4417区间统计

给你一个数列{An},然后有m次查询,每次查询一段区间 [l,r] <= h 的值的个数。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamRead