【Codeforces Round 362 (Div 2)D】【树的遍历 概率均分思想】Puzzles 兄弟节点的等概率遍历下 树的遍历每点期望时间戳

本文主要是介绍【Codeforces Round 362 (Div 2)D】【树的遍历 概率均分思想】Puzzles 兄弟节点的等概率遍历下 树的遍历每点期望时间戳,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

D. Puzzles
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1through n and n - 1 roads between them. Cities and roads of USC form a rooted tree (Barney's not sure why it is rooted). Root of the tree is the city number 1. Thus if one will start his journey from city 1, he can visit any city he wants by following roads.

Some girl has stolen Barney's heart, and Barney wants to find her. He starts looking for in the root of the tree and (since he is Barney Stinson not a random guy), he uses a random DFS to search in the cities. A pseudo code of this algorithm is as follows:

let starting_time be an array of length n
current_time = 0
dfs(v):current_time = current_time + 1starting_time[v] = current_timeshuffle children[v] randomly (each permutation with equal possibility)// children[v] is vector of children cities of city vfor u in children[v]:dfs(u)

As told before, Barney will start his journey in the root of the tree (equivalent to calldfs(1)).

Now Barney needs to pack a backpack and so he wants to know more about his upcoming journey: for every city i, Barney wants to know the expected value of starting_time[i]. He's a friend of Jon Snow and knows nothing, that's why he asked for your help.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 105) — the number of cities in USC.

The second line contains n - 1 integers p2, p3, ..., pn (1 ≤ pi < i), where pi is the number of the parent city of city number i in the tree, meaning there is a road between cities numberedpi and i in USC.

Output

In the first and only line of output print n numbers, where i-th number is the expected value of starting_time[i].

Your answer for each city will be considered correct if its absolute or relative error does not exceed 10 - 6.

Examples
input
7
1 2 1 1 4 4
output
1.0 4.0 5.0 3.5 4.5 5.0 5.0 
input
12
1 1 2 2 4 4 3 3 1 10 8
output
1.0 5.0 5.5 6.5 7.5 8.0 8.0 7.0 7.5 6.5 7.5 8.0


#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; }
const int N = 1e5+10, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f;
int n;
vector<int>a[N];
double ans[N];
int sz[N];
void dfs1(int x)
{sz[x] = 0;for (int i = a[x].size() - 1; ~i; --i){int y = a[x][i];dfs1(y);sz[x] += sz[y];}++sz[x];
}
void dfs2(int x)
{for (int i = a[x].size() - 1; ~i; --i){int y = a[x][i];double sum = (sz[x] - 1 - sz[y]) / 2.0;ans[y] = ans[x] + sum + 1;dfs2(y);}
}
int main()
{while (~scanf("%d", &n)){for (int i = 1; i <= n; ++i)a[i].clear();for (int i = 2; i <= n; ++i){int x; scanf("%d", &x);a[x].push_back(i);}ans[1] = 1;dfs1(1);dfs2(1);for (int i = 1; i <= n; ++i)printf("%.12f\n", ans[i]);}return 0;
}
/*
【题意】
给你一棵树,然后每个节点遍历自己子节点的拓扑序是任意的(其访问子节点的全排列等概率化)。
dfs带有时间戳。问你,每个节点的访问时间戳的期望是多少。【类型】
树的遍历 概率均分思想【分析】
这道题乍一看有些不知道如何入手。
难道我们要考虑所有全排列?
不过实际发现,所谓全排列规律均等,
其实也就意味着——
任意两个兄弟节点的访问概率都是均等的。
即:
每个节点有50%的概率在其兄弟节点的子树之后访问。于是,我们求出每棵子树的大小,
然后每个节点的访问时间戳期望=父节点访问时间戳期望+1+∑兄弟节点子树大小/2
这道题就可以解决啦。【时间复杂度&&优化】
O(n)*/


这篇关于【Codeforces Round 362 (Div 2)D】【树的遍历 概率均分思想】Puzzles 兄弟节点的等概率遍历下 树的遍历每点期望时间戳的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610359

相关文章

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法

《golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法》:本文主要介绍golang获取当前时间、时间戳和时间字符串及它们之间的相互转换,本文通过实例代码给大家介绍的非常详细,感兴趣... 目录1、获取当前时间2、获取当前时间戳3、获取当前时间的字符串格式4、它们之间的相互转化上篇文章给大家介

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

分辨率三兄弟LPI、DPI 和 PPI有什么区别? 搞清分辨率的那些事儿

《分辨率三兄弟LPI、DPI和PPI有什么区别?搞清分辨率的那些事儿》分辨率这个东西,真的是让人又爱又恨,为了搞清楚它,我可是翻阅了不少资料,最后发现“小7的背包”的解释最让我茅塞顿开,于是,我... 在谈到分辨率时,我们经常会遇到三个相似的缩写:PPI、DPI 和 LPI。虽然它们看起来差不多,但实际应用

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python如何获取域名的SSL证书信息和到期时间

《Python如何获取域名的SSL证书信息和到期时间》在当今互联网时代,SSL证书的重要性不言而喻,它不仅为用户提供了安全的连接,还能提高网站的搜索引擎排名,那我们怎么才能通过Python获取域名的S... 目录了解SSL证书的基本概念使用python库来抓取SSL证书信息安装必要的库编写获取SSL证书信息

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J