模块调用、Dropout以及残差(residual)连接函数

2024-01-15 12:44

本文主要是介绍模块调用、Dropout以及残差(residual)连接函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要函数dropout_wrapper实现张量经模块前向传输再经过dropout层,最后和输入张量相加输出。函数调用:dropout_wrapper_fn <- dropout_wrapper <- apply_dropout

import jax 
import functools
import ml_collectionsNUM_RES = 'num residues placeholder'
NUM_MSA_SEQ = 'msa placeholder'
NUM_EXTRA_SEQ = 'extra msa placeholder'
NUM_TEMPLATES = 'num templates placeholder'## 模型参数
CONFIG = ml_collections.ConfigDict({'data': {'common': {'masked_msa': {'profile_prob': 0.1,'same_prob': 0.1,'uniform_prob': 0.1},'max_extra_msa': 1024,'msa_cluster_features': True,'num_recycle': 3,'reduce_msa_clusters_by_max_templates': False,'resample_msa_in_recycling': True,'template_features': ['template_all_atom_positions', 'template_sum_probs','template_aatype', 'template_all_atom_masks','template_domain_names'],'unsupervised_features': ['aatype', 'residue_index', 'sequence', 'msa', 'domain_name','num_alignments', 'seq_length', 'between_segment_residues','deletion_matrix'],'use_templates': False,},'eval': {'feat': {'aatype': [NUM_RES],'all_atom_mask': [NUM_RES, None],'all_atom_positions': [NUM_RES, None, None],'alt_chi_angles': [NUM_RES, None],'atom14_alt_gt_exists': [NUM_RES, None],'atom14_alt_gt_positions': [NUM_RES, None, None],'atom14_atom_exists': [NUM_RES, None],'atom14_atom_is_ambiguous': [NUM_RES, None],'atom14_gt_exists': [NUM_RES, None],'atom14_gt_positions': [NUM_RES, None, None],'atom37_atom_exists': [NUM_RES, None],'backbone_affine_mask': [NUM_RES],'backbone_affine_tensor': [NUM_RES, None],'bert_mask': [NUM_MSA_SEQ, NUM_RES],'chi_angles': [NUM_RES, None],'chi_mask': [NUM_RES, None],'extra_deletion_value': [NUM_EXTRA_SEQ, NUM_RES],'extra_has_deletion': [NUM_EXTRA_SEQ, NUM_RES],'extra_msa': [NUM_EXTRA_SEQ, NUM_RES],'extra_msa_mask': [NUM_EXTRA_SEQ, NUM_RES],'extra_msa_row_mask': [NUM_EXTRA_SEQ],'is_distillation': [],'msa_feat': [NUM_MSA_SEQ, NUM_RES, None],'msa_mask': [NUM_MSA_SEQ, NUM_RES],'msa_row_mask': [NUM_MSA_SEQ],'pseudo_beta': [NUM_RES, None],'pseudo_beta_mask': [NUM_RES],'random_crop_to_size_seed': [None],'residue_index': [NUM_RES],'residx_atom14_to_atom37': [NUM_RES, None],'residx_atom37_to_atom14': [NUM_RES, None],'resolution': [],'rigidgroups_alt_gt_frames': [NUM_RES, None, None],'rigidgroups_group_exists': [NUM_RES, None],'rigidgroups_group_is_ambiguous': [NUM_RES, None],'rigidgroups_gt_exists': [NUM_RES, None],'rigidgroups_gt_frames': [NUM_RES, None, None],'seq_length': [],'seq_mask': [NUM_RES],'target_feat': [NUM_RES, None],'template_aatype': [NUM_TEMPLATES, NUM_RES],'template_all_atom_masks': [NUM_TEMPLATES, NUM_RES, None],'template_all_atom_positions': [NUM_TEMPLATES, NUM_RES, None, None],'template_backbone_affine_mask': [NUM_TEMPLATES, NUM_RES],'template_backbone_affine_tensor': [NUM_TEMPLATES, NUM_RES, None],'template_mask': [NUM_TEMPLATES],'template_pseudo_beta': [NUM_TEMPLATES, NUM_RES, None],'template_pseudo_beta_mask': [NUM_TEMPLATES, NUM_RES],'template_sum_probs': [NUM_TEMPLATES, None],'true_msa': [NUM_MSA_SEQ, NUM_RES]},'fixed_size': True,'subsample_templates': False,  # We want top templates.'masked_msa_replace_fraction': 0.15,'max_msa_clusters': 512,'max_templates': 4,'num_ensemble': 1,},},'model': {'embeddings_and_evoformer': {'evoformer_num_block': 48,'evoformer': {'msa_row_attention_with_pair_bias': {'dropout_rate': 0.15,'gating': True,'num_head': 8,'orientation': 'per_row','shared_dropout': True},'msa_column_attention': {'dropout_rate': 0.0,'gating': True,'num_head': 8,'orientation': 'per_column','shared_dropout': True},'msa_transition': {'dropout_rate': 0.0,'num_intermediate_factor': 4,'orientation': 'per_row','shared_dropout': True},'outer_product_mean': {'first': False,'chunk_size': 128,'dropout_rate': 0.0,'num_outer_channel': 32,'orientation': 'per_row','shared_dropout': True},'triangle_attention_starting_node': {'dropout_rate': 0.25,'gating': True,'num_head': 4,'orientation': 'per_row','shared_dropout': True},'triangle_attention_ending_node': {'dropout_rate': 0.25,'gating': True,'num_head': 4,'orientation': 'per_column','shared_dropout': True},'triangle_multiplication_outgoing': {'dropout_rate': 0.25,'equation': 'ikc,jkc->ijc','num_intermediate_channel': 128,'orientation': 'per_row','shared_dropout': True,'fuse_projection_weights': False,},'triangle_multiplication_incoming': {'dropout_rate': 0.25,'equation': 'kjc,kic->ijc','num_intermediate_channel': 128,'orientation': 'per_row','shared_dropout': True,'fuse_projection_weights': False,},'pair_transition': {'dropout_rate': 0.0,'num_intermediate_factor': 4,'orientation': 'per_row','shared_dropout': True}},'extra_msa_channel': 64,'extra_msa_stack_num_block': 4,'max_relative_feature': 32,'msa_channel': 256,'pair_channel': 128,'prev_pos': {'min_bin': 3.25,'max_bin': 20.75,'num_bins': 15},'recycle_features': True,'recycle_pos': True,'seq_channel': 384,'template': {'attention': {'gating': False,'key_dim': 64,'num_head': 4,'value_dim': 64},'dgram_features': {'min_bin': 3.25,'max_bin': 50.75,'num_bins': 39},'embed_torsion_angles': False,'enabled': False,'template_pair_stack': {'num_block': 2,'triangle_attention_starting_node': {'dropout_rate': 0.25,'gating': True,'key_dim': 64,'num_head': 4,'orientation': 'per_row','shared_dropout': True,'value_dim': 64},'triangle_attention_ending_node': {'dropout_rate': 0.25,'gating': True,'key_dim': 64,'num_head': 4,'orientation': 'per_column','shared_dropout': True,'value_dim': 64},'triangle_multiplication_outgoing': {'dropout_rate': 0.25,'equation': 'ikc,jkc->ijc','num_intermediate_channel': 64,'orientation': 'per_row','shared_dropout': True,'fuse_projection_weights': False,},'triangle_multiplication_incoming': {'dropout_rate': 0.25,'equation': 'kjc,kic->ijc','num_intermediate_channel': 64,'orientation': 'per_row','shared_dropout': True,'fuse_projection_weights': False,},'pair_transition': {'dropout_rate': 0.0,'num_intermediate_factor': 2,'orientation': 'per_row','shared_dropout': True}},'max_templates': 4,'subbatch_size': 128,'use_template_unit_vector': False,}},'global_config': {'deterministic': False,'multimer_mode': False,'subbatch_size': 4,'use_remat': False,'zero_init': True,'eval_dropout': False,},'heads': {'distogram': {'first_break': 2.3125,'last_break': 21.6875,'num_bins': 64,'weight': 0.3},'predicted_aligned_error': {# `num_bins - 1` bins uniformly space the# [0, max_error_bin A] range.# The final bin covers [max_error_bin A, +infty]# 31A gives bins with 0.5A width.'max_error_bin': 31.,'num_bins': 64,'num_channels': 128,'filter_by_resolution': True,'min_resolution': 0.1,'max_resolution': 3.0,'weight': 0.0,},'experimentally_resolved': {'filter_by_resolution': True,'max_resolution': 3.0,'min_resolution': 0.1,'weight': 0.01},'structure_module': {'num_layer': 8,'fape': {'clamp_distance': 10.0,'clamp_type': 'relu','loss_unit_distance': 10.0},'angle_norm_weight': 0.01,'chi_weight': 0.5,'clash_overlap_tolerance': 1.5,'compute_in_graph_metrics': True,'dropout': 0.1,'num_channel': 384,'num_head': 12,'num_layer_in_transition': 3,'num_point_qk': 4,'num_point_v': 8,'num_scalar_qk': 16,'num_scalar_v': 16,'position_scale': 10.0,'sidechain': {'atom_clamp_distance': 10.0,'num_channel': 128,'num_residual_block': 2,'weight_frac': 0.5,'length_scale': 10.,},'structural_violation_loss_weight': 1.0,'violation_tolerance_factor': 12.0,'weight': 1.0},'predicted_lddt': {'filter_by_resolution': True,'max_resolution': 3.0,'min_resolution': 0.1,'num_bins': 50,'num_channels': 128,'weight': 0.01},'masked_msa': {'num_output': 23,'weight': 2.0},},'num_recycle': 3,'resample_msa_in_recycling': True},
})c = CONFIG.model.embeddings_and_evoformer.evoformer
gc = CONFIG.model.global_configdef apply_dropout(*, tensor, safe_key, rate, is_training, broadcast_dim=None):"""Applies dropout to a tensor."""if is_training and rate != 0.0:shape = list(tensor.shape)if broadcast_dim is not None:shape[broadcast_dim] = 1keep_rate = 1.0 - ratekeep = jax.random.bernoulli(safe_key.get(), keep_rate, shape=shape)return keep * tensor / keep_rateelse:return tensordef dropout_wrapper(module,input_act,mask,safe_key,global_config,output_act=None,is_training=True,**kwargs):"""Applies module + dropout + residual update."""if output_act is None:output_act = input_actgc = global_configresidual = module(input_act, mask, is_training=is_training, **kwargs)dropout_rate = 0.0 if gc.deterministic else module.config.dropout_rate# Will override `is_training` to True if want to use dropout.should_apply_dropout = True if gc.eval_dropout else is_trainingif module.config.shared_dropout:if module.config.orientation == 'per_row':broadcast_dim = 0else:broadcast_dim = 1else:broadcast_dim = Noneresidual = apply_dropout(tensor=residual,safe_key=safe_key,rate=dropout_rate,is_training=should_apply_dropout,broadcast_dim=broadcast_dim)new_act = output_act + residualreturn new_act# functools.partial 部分应用(partial application)一个函数.
# 即固定函数的一些参数,从而创建一个新的函数。
dropout_wrapper_fn = functools.partial(dropout_wrapper, is_training=True, global_config=gc)


 

这篇关于模块调用、Dropout以及残差(residual)连接函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/608930

相关文章

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

python如何调用java的jar包

《python如何调用java的jar包》这篇文章主要为大家详细介绍了python如何调用java的jar包,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录一、安装包二、使用步骤三、代码演示四、自己写一个jar包五、打包步骤六、方法补充一、安装包pip3 install