如何用LLM和自有知识库搭建智能agent?

2024-01-15 07:44

本文主要是介绍如何用LLM和自有知识库搭建智能agent?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用LangChain建立知识库,文末中也推荐其他方案。
项目源码:ChatPDF实现
在这里插入图片描述

LangChain

Indexes使用

对加载的内容进行索引,在indexes中提供了一些功能:

  • Document Loaders,加载文档
  • Text Splitters,文档切分
  • VectorStores,向量存储
  • Retrievers,文档检索

LangChain作为问答可分为4个步骤:

  • Step1,创建索引
  • Step2,从该索引创建Retriever
  • Step3,创建问答链
  • Step4,提问!

ChatTxt实现

LangChain中定义的BaseRetriever,通过get_relevant_documents 函数,可以获取和query相关的文档列表。
在LangChain中使用了Chroma作为向量存储和检索引擎,所以你需要先安装工具箱。

from abc import ABC, abstractmethod
from typing import List
from langchain.schema import Document
class BaseRetriever(ABC):
@abstractmethod
def get_relevant_documents(self, query: str) -> 
List[Document]:
"""Get texts relevant for a query.
Args:
query: string to find relevant texts for
Returns:
List of relevant documents

Chroma是一个用于构建带有embedding的 AI 应用的数据库。

import chromadb
# 获取Chroma Client对象
chroma_client = chromadb.Client()
# 创建Chroma数据集
collection = 
chroma_client.create_collection(name="my_collection")
# 添加数据
collection.add(
documents=["This is an apple", "This is a banana"],
metadatas=[{"source": "my_source"}, {"source": 
"my_source"}],
ids=["id1", "id2"]
)
# 查询数据
results = collection.query(
query_texts=["This is a query document"],
n_results=2
)
results

{‘ids’: [[‘id1’, ‘id2’]],
‘embeddings’: None,
‘documents’: [[‘This is an apple’, ‘This is a banana’]],
‘metadatas’: [[{‘source’: ‘my_source’}, {‘source’: ‘my_source’}]],
‘distances’: [[1.652575969696045, 1.6869373321533203]]}

from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.document_loaders import TextLoader
from langchain.indexes import VectorstoreIndexCreator
# 文档加载
loader = TextLoader('./三国演义第1回.txt', encoding='utf8')
# 创建向量索引
index = VectorstoreIndexCreator().from_loaders([loader])
# 检索文档中的内容
query = "桃园三结义是哪三个人"
index.query(query)

更多参考项目源码:
Txt格式实现

LangChain的4种索引方式:

1.stuff
直接把文档作为prompt输入给OpenAI。

2.map_reduce
对于每个chunk做一个prompt(回答或者摘要),然后再做合并。

3.refine
在第一个chunk上做prompt得到结果,然后合并下一个文件再输出结果。

4.map_rerank
对每个chunk做prompt,然后打个分,然后根据分数返回最好的文档中的结果。

ChatPDF实现

方法1

from langchain.document_loaders import PyPDFLoader
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain# 读取本地知识
loader = UnstructuredPDFLoader("三国演义第一回.pdf")
pages = loader.load_and_split()
embeddings = OpenAIEmbeddings()
docsearch = Chroma.from_documents(pages, embeddings).as_retriever()query = "桃园三结义都有谁"
docs = docsearch.get_relevant_documents(query)
chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff")
output = chain.run(input_documents=docs, question=query)
print(output)

方法2

相对完整版的ChatPDF:

Step1,生成embedding,保存到本地

1.加载PDF,得到文本 content。
2.将content切分成多个docs,设置每个doc的max_length,比如 max_length=300。
3.设置embedding编码方法,比如OpenAIEmbeddings,并对docs进行embedding。
4.持久化到本地目录,比如 db文件夹

Step2,用户query
1.检索相关docs(可以设置 Topk= 4)
2.使用 load_qa_chain,设置input_documents参数
3.得到Answer

import os
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.document_loaders import TextLoader
from langchain.chains.question_answering import load_qa_chain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate# os.environ["OPENAI_API_KEY"] = "{your-api-key}"global retriever
def load_embedding():global retriever# 使用OpenAI Embeddingembedding = OpenAIEmbeddings()# 指定了persist_directory, 所以在本地会有db文件夹,保存持久化结果vectordb = Chroma(persist_directory='db', embedding_function=embedding)# 检索Top4retriever = vectordb.as_retriever(search_kwargs={"k": 4})# 基于query进行问答
def prompt(query):prompt_template = """请注意:请谨慎评估query与提示的Context信息的相关性,只根据本段输入文字信息的内容进行回答,如果query与提供的材料无关,请回答"我不知道",另外也不要回答无关答案:Context: {context}Question: {question}Answer:"""PROMPT = PromptTemplate(input_variables=["context", "question"],template=prompt_template)# 从向量数据库中,检索出Top5相似文档docs = retriever.get_relevant_documents(query)print('docs=', docs)print('len(docs)=', len(docs))# 基于docs来prompt,返回你想要的内容chain = load_qa_chain(ChatOpenAI(temperature=0), chain_type="stuff", prompt=PROMPT)result = chain({"input_documents": docs, "question": query}, return_only_outputs=True)return result['output_text']
#%%
# 加载embedding
load_embedding()
print('hhhhh')
query = "桃园三结义都有谁"
#query = "曹操都有哪些部将"print("Query:" + query + '\nAnswer:' + prompt(query) + '\n')

ChatPDF实现原理

加载文件 -> 读取文本-> 文本分割 -> 文本向量化-> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的top k个-> 匹配出的文本作为上下文和问题一起添加到 prompt 中-> 提交给 LLM 生成回答。

在这里插入图片描述

在这里插入图片描述

LangChain + ChatGLM

https://github.com/imClumsyPanda/langchain-ChatGLM

# 加载Google云硬盘
from google.colab import drive
drive.mount('/content/drive’)
# 拉取仓库
%cd /content/drive/MyDrive/chatglm/langchain-ChatGLM
!pip install -r requirements.txt
!pip install gradio==3.28.3
# 下载模型
%cd /content/drive/MyDrive/chatglm/langchain-ChatGLM
!git clone https://huggingface.co/THUDM/chatglm-6b-int4
!git clone https://huggingface.co/GanymedeNil/text2veclarge-chinese
#修改web.py和model_config.py文件
!sed -i 's/share=False/share=True/g' 
/content/drive/MyDrive/chatglm/langchainChatGLM/webui.py
!sed -i 's/GanymedeNil\/text2vec-largechinese/\/content\/drive\/MyDrive\/chatglm\/langchainChatGLM\/text2vec-large-chinese/g' 
/content/drive/MyDrive/chatglm/langchainChatGLM/configs/model_config.py
……

在这里插入图片描述

ChatPDF实现场景

典型的使用场景:

  • 项目经理角色:项目管理文档 + LLM
  • 新车导购角色:新车导购文章 + LLM
  • 二手车专家:二手车鉴定文档 + LLM
  • 老中医角色: 中医问诊文档 + LLM
  • 智能客服:客服聊天记录 + LLM
  • 律师角色:律师咨询记录 + LLM
  • HR角色:考勤绩效手册 + LLM

一个典型的prompt模板

已知信息:
{context} 根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
问题是:{question}

向量数据库

存储embedding的数据库称为向量数据库。ChatGPT中的Transformer结构需要对知识进行Embedding。
在这里插入图片描述
在这里插入图片描述

其他知识库方案

https://chat.openai.com/g/g-V2KIUZSj0-ai-pdf

Ai PDF是基于GPT的一个PDF文档处理工具,具有以下特点:

  • 可以处理体积高达2GB的单个PDF文件,没有限制。
  • 支持在http://myaidrive.com免费账号下上传大量PDF,无需重复上传文件。
  • PRO版本可以在数千个PDF中进行检索,并可以处理扫描的OCR文档。
  • 可以为长度较长的文档生成高质量的摘要。
  • 利用GPT的能力从PDF中提取信息,进行问答。
  • 整体而言,Ai PDF致力于提供PDF文档处理、搜索、摘要和问答等功能,可以节省人工查阅PDF的大量时间,提高工作效率。
  • 该服务正在不断完善中,需要用户签约才能使用ChatGPT进行互动。

https://github.com/imartinez/privateGPT

这是一个开源项目,让用户可以利用GPT的力量与自己的文档进行交互,完全本地运行,不会泄露用户数据。用户可以导入各种文档,然后用自然语言提出问题,GPT会基于这些文档给出回答。

https://github.com/nomic-ai/gpt4all

它提供了开源的GPT聊天机器人,可以在本地环境运行,不需要连接外部API。支持多种编程语言实现,可以自定义训练来优化对话效果。

https://github.com/PromtEngineer/localGPT

这也是一个本地运行GPT模型的开源项目。用户可以将文档导入本地,GPT模型会基于这些文档内容来回答用户提出的问题,保护了用户隐私。

https://filegpt.app/

这是一个商业化的工具,同样可以让用户与各种格式的文档和内容进行自然语言交互,获取精确的回复。它支持PDF、Word文档、文本、音频、视频等多种格式。

https://www.popai.pro/

这是一个面向个人的AI工作空间服务,用户可以自定义训练模型来优化不同的任务,如写作、总结、问答等。它提供了可视化的训练监控界面。主要面向企业用户。

https://www.humata.ai/

Humata是一个利用AI技术让用户可以与各种数据文档进行自然语言交互的工具。

https://askwise.ai/

askwise.ai是一个基于GPT的知识助手服务。

结语

知识就是力量,AI生成筑高楼。

欢迎留言交流!

我是李孟聊AI,独立开源软件开发者,SolidUI作者,对于新技术非常感兴趣,专注AI和数据领域,如果对我的文章内容感兴趣,请帮忙关注点赞收藏,谢谢!

这篇关于如何用LLM和自有知识库搭建智能agent?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/608146

相关文章

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

鸿蒙开发搭建flutter适配的开发环境

《鸿蒙开发搭建flutter适配的开发环境》文章详细介绍了在Windows系统上如何创建和运行鸿蒙Flutter项目,包括使用flutterdoctor检测环境、创建项目、编译HAP包以及在真机上运... 目录环境搭建创建运行项目打包项目总结环境搭建1.安装 DevEco Studio NEXT IDE

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

智能交通(二)——Spinger特刊推荐

特刊征稿 01  期刊名称: Autonomous Intelligent Systems  特刊名称: Understanding the Policy Shift  with the Digital Twins in Smart  Transportation and Mobility 截止时间: 开放提交:2024年1月20日 提交截止日

pico2 开发环境搭建-基于ubuntu

pico2 开发环境搭建-基于ubuntu 安装编译工具链下载sdk 和example编译example 安装编译工具链 sudo apt install cmake gcc-arm-none-eabi libnewlib-arm-none-eabi libstdc++-arm-none-eabi-newlib 注意cmake的版本,需要在3.17 以上 下载sdk 和ex