1127: 矩阵乘积

2024-01-15 07:28
文章标签 矩阵 乘积 1127

本文主要是介绍1127: 矩阵乘积,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

计算两个矩阵A和B的乘积。

输入

第一行三个正整数m、p和n,0<=m,n,p<=10,表示矩阵A是m行p列,矩阵B是p行n列;

接下来的m行是矩阵A的内容,每行p个整数,用空格隔开;

最后的p行是矩阵B的内容,每行n个整数,用空格隔开。

输出

输出乘积矩阵:输出占m行,每行n个数据,以空格隔开。

样例输入
2 3 41 0 1
0 0 11 1 1 3
4 5 6 7
8 9 1 0
样例输出
9 10 2 3
8 9 1 0
代码 
#include<stdio.h>
#include<stdlib.h>
int main(){int m,p,n;scanf("%d %d %d",&m, &p,&n);int *matrix1 = (int *)malloc(sizeof(int)*(m*p));int *matrix2 = (int *)malloc(sizeof(int)*(p*n));for(int i=0;i<m;i++){for(int j=0;j<p;j++){scanf("%d", matrix1+i*p+j);}}for(int i=0;i<p;i++){for(int j=0;j<n;j++){scanf("%d", matrix2+i*n+j);}}for(int i=0;i<m;i++){for(int j=0;j<n;j++){int sum = 0;for(int k=0; k<p; k++){sum+=matrix1[i*p+k]*matrix2[k*n+j];}printf("%d ", sum);}printf("\n");}return 0;
}
提交结果截图

这篇关于1127: 矩阵乘积的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/608099

相关文章

poj 1127 线段相交的判定

题意: 有n根木棍,每根的端点坐标分别是 px, py, qx, qy。 判断每对木棍是否相连,当他们之间有公共点时,就认为他们相连。 并且通过相连的木棍相连的木棍也是相连的。 解析: 线段相交的判定。 首先,模板中的线段相交是不判端点的,所以要加一个端点在直线上的判定; 然后,端点在直线上的判定这个函数是不判定两个端点是同一个端点的情况的,所以要加是否端点相等的判断。 最后

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

每日一题,力扣leetcode Hot100之238.除自身以外数组的乘积

乍一看这个题很简单,但是不能用除法,并且在O(N)时间复杂度完成或许有点难度。 考虑到不能用除法,如果我们要计算输出结果位置i的值,我们就要获取这个位置左边的乘积和右边的乘积,那么我新设立两个数组L和R。 对于L来说,由于表达的是位置i左边的数的乘积,那么L[0]=1,因为第一个数字左边没数那么为了不影响乘积初始值就设置为1,那么L[1]=L[0]*nums[0],那么L[i]=L[i-1

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

【UVA】10003-Cutting Sticks(动态规划、矩阵链乘)

一道动态规划题,不过似乎可以用回溯水过去,回溯的话效率很烂的。 13988658 10003 Cutting Sticks Accepted C++ 1.882 2014-08-04 09:26:49 AC代码: #include<cstdio>#include<cstring>#include<iostream>#include<algorithm>#include

算法练习题17——leetcode54螺旋矩阵

题目描述 给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。  代码 import java.util.*;class Solution {public List<Integer> spiralOrder(int[][] matrix) {// 用于存储螺旋顺序遍历的结果List<Integer> result = new ArrayList

线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析

文章目录 1.特征值和特征向量1.1 特征值和特征向量的定义1.2 特征值和特征向量的求法1.3 特征值特征向量的主要结论 2.相似2.1 相似的定义2.2 相似的性质2.3 相似的结论 3.相似对角化4.实对称矩阵4.1 实对称矩阵的基本性质4.2 施密特正交化 5.重难点题型总结5.1 判断矩阵能否相似对角化5.2 已知两个矩阵相似,求某个矩阵中的未知参数5.3 相似时,求可逆矩阵P,使