多层感知机(MultiLayer Perceptron,MLP)python实现

2024-01-15 02:36

本文主要是介绍多层感知机(MultiLayer Perceptron,MLP)python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多层感知机(MultiLayer Perceptron,MLP)是一种人工神经网络模型,通常用于处理分类问题。它是一种前馈神经网络(Feedforward Neural Network),由多个层次组成,每个层次包含多个神经元。

MLP 的基本组成包括:

  1. 输入层(Input Layer): 接收输入特征的层。每个输入特征都对应于输入层中的一个节点。

  2. 隐藏层(Hidden Layers): 在输入层和输出层之间的一层或多层。每个隐藏层包含多个神经元,每个神经元与前一层和后一层的所有神经元都有连接。

  3. 输出层(Output Layer): 生成最终输出的层。输出层的神经元数量通常取决于问题的类别数,例如,对于二分类问题,通常有一个输出神经元,表示两个类别的概率。

每个神经元都与前一层的所有神经元相连接,并具有带权重的连接。在每个神经元中,输入被加权并通过激活函数进行转换,产生神经元的输出。这个过程可以表示为:

输出=Activation(Weighted Sum of Inputs)

其中,激活函数通常是非线性的,它引入了非线性变换,使得网络能够学习更加复杂的函数。

MLP 使用反向传播算法进行训练,通过最小化损失函数来调整连接权重,使得网络能够对训练数据进行更好的拟合。反向传播通过计算预测与实际标签之间的误差,并反向传播该误差以调整权重。

由于 MLP 具有多个层次,它能够学习更加复杂的特征和关系,因此在许多应用中被广泛使用,包括图像识别、自然语言处理、分类等。

示例:使用 Python 中的 scikit-learn 库实现的简单 MLP ,用于解决手写数字识别(MNIST 数据集)问题:

from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn import datasets# 加载 MNIST 数据集
digits = datasets.load_digits()
X = digits.data
y = digits.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建 MLP 模型
mlp = MLPClassifier(hidden_layer_sizes=(100,), max_iter=500, activation='relu', random_state=42)# 训练模型
mlp.fit(X_train, y_train)# 预测测试集
y_pred = mlp.predict(X_test)# 计算准确度
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")

这个例子使用了 MLPClassifier,它是 scikit-learn 中的多层感知机分类器。在这个例子中,MLP 模型有一个包含 100 个神经元的隐藏层,使用 ReLU(Rectified Linear Unit)作为激活函数。模型在训练集上进行 500 次迭代。

实际上,深度学习任务通常使用更复杂的神经网络架构,可能包含多个隐藏层,不同的激活函数,以及其他调整参数。上述示例是一个简单的入门演示。

这篇关于多层感知机(MultiLayer Perceptron,MLP)python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/607367

相关文章

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio