强化学习应用(六):基于Q-learning的物流配送路径规划研究(提供Python代码)

本文主要是介绍强化学习应用(六):基于Q-learning的物流配送路径规划研究(提供Python代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Q-learning算法简介

Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。

Q-learning算法的核心思想是使用一个Q值函数来估计每个状态动作对的价值。Q值表示在特定状态下采取某个动作所能获得的预期累积奖励。算法通过不断更新Q值函数来优化智能体的决策策略。

Q-learning算法的更新规则如下:

Q(s, a) = Q(s, a) + α * (r + γ * max(Q(s', a')) - Q(s, a))

其中,Q(s, a)表示在状态s下采取动作a的Q值,α是学习率,r是当前状态下采取动作a所获得的即时奖励,γ是折扣因子,s'是下一个状态,a'是在下一个状态下的最优动作。

Q-learning算法的步骤如下:

1. 初始化Q值函数为0或随机值。

2. 在每个时间步骤t,根据当前状态s选择一个动作a。

3. 执行动作a,观察环境返回的奖励r和下一个状态s'。4. 根据Q值函数更新规则更新Q值:Q(s, a) = Q(s, a) + α * (r + γ * max(Q(s', a')) - Q(s, a))。

5. 将下一个状态s'设置为当前状态s。

6. 重复步骤2-5直到达到终止条件。

Q-learning算法的优点是可以在没有环境模型的情况下进行学习,并且可以处理连续状态和动作空间。它在许多领域中都有广泛的应用,如机器人控制、游戏策略和自动驾驶等。

二、物流配送路径规划问题介绍

物流配送路径规划问题是指在物流配送过程中,如何合理地安排运输路径,以最小化成本、提高配送效率和满足各种约束条件的问题。该问题在物流领域具有重要的应用价值。

在物流配送路径规划问题中,需要考虑以下因素:

1. 配送需求:包括货物的数量、种类、重量等信息。

2. 配送点:包括供应商、仓库、客户等各个配送点的位置信息。

3. 车辆:包括车辆的数量、容量、速度等信息。

4. 路网:包括道路网络的拓扑结构、距离、通行时间等信息。

5. 约束条件:包括时间窗口约束、车辆容量约束、车辆行驶时间约束等。

为了解决物流配送路径规划问题,研究者们提出了多种优化算法,如遗传算法、粒子群算法、模拟退火算法等。这些算法通过对配送路径进行搜索和优化,以找到最优的配送方案。

在本文中物流配送路径规划问题仅仅考虑路径最短,可以简单抽象为旅行商问题(Traveling salesman problem, TSP)。TSP是一个经典的组合优化问题,它可以描述为一个商品推销员去若干城市推销商品,要求遍历所有城市后回到出发地,目的是选择一个最短的路线。当城市数目较少时,可以使用穷举法求解。而随着城市数增多,求解空间比较复杂,无法使用穷举法求解,因此需要使用优化算法来解决TSP问题。一般地,TSP问题可描述为:一个旅行商需要拜访n个城市,城市之间的距离是已知的,若旅行商对每个城市必须拜访且只拜访一次,求旅行商从某个城市出发并最终回到起点的一条最短路径。

三、Q-learning求解物流配送路径规划

3.1部分Python代码

可以自动生成地图也可导入自定义地图,只需要修改如下代码中chos的值即可。

import matplotlib.pyplot as plt
from Qlearning import Qlearning
#Chos: 1 随机初始化地图; 0 导入固定地图
chos=1
node_num=46#当选择随机初始化地图时,自动随机生成node_num-1个城市
# 创建对象,初始化节点坐标,计算每两点距离
qlearn = Qlearning(alpha=0.5, gamma=0.01, epsilon=0.5, final_epsilon=0.05,chos=chos,node_num=node_num)
# 训练Q表、打印路线
iter_num=8000#训练次数
Curve,BestRoute,Qtable,Map=qlearn.Train_Qtable(iter_num=iter_num)
#Curve 训练曲线
#BestRoute 最优路径
#Qtable Qlearning求解得到的在最优路径下的Q表
#Map TSP的城市节点坐标## 画图
plt.figure()
plt.ylabel("distance")
plt.xlabel("iter")
plt.plot(Curve, color='green')
plt.title("Q-Learning")
plt.savefig('curve.png')
plt.show()

3.2部分结果

(1)随机生成15个城市

Q-learning得到的最短路线: [1, 14, 9, 11, 2, 8, 13, 6, 15, 3, 12, 10, 7, 4, 5, 1]

(2)随机生成20个城市

Q-learning得到的

最短路线: [1, 15, 16, 13, 3, 14, 7, 19, 8, 12, 9, 20, 6, 5, 2, 17, 11, 4, 18, 10, 1]

(3)随机生成25个城市

Q-learning得到的最短路线: [1, 3, 24, 5, 6, 8, 23, 18, 2, 16, 7, 10, 13, 15, 20, 14, 21, 9, 22, 11, 4, 25, 19, 17, 12, 1]

四、完整Python代码

这篇关于强化学习应用(六):基于Q-learning的物流配送路径规划研究(提供Python代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/606672

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了