本文主要是介绍2015 Multi-University Training Contest 5 B(MZL's xor),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Problem Description
MZL loves xor very much.Now he gets an array A.The length of A is n.He wants to know the xor of all (Ai+Aj)(1≤i,j≤n)
The xor of an array B is defined as B1 xor B2...xor Bn
Input
Multiple test cases, the first line contains an integer T(no more than 20), indicating the number of cases.
Each test case contains four integers:n,m,z,l
A1=0,Ai=(Ai−1∗m+z) mod l
1≤m,z,l≤5∗105,n=5∗105
Output
For every test.print the answer.
Sample Input
2
3 5 5 7
6 8 8 9
Sample Output
14
16
题意:英语很短,不说了。
思路:(a1+a1)^(a1+a2)^(a1+a3)^...(an+an)^
(a2+a1)^(a3+a1)....
其实这样就很明显了所有异或满足结合律,那么(ai+aj)^(aj+ai)=2(ai^aj),那么看代码吧
int main()
{
ll n , m , l , z ;
int t ;
scanf("%d" , &t) ;
while(t--)
{
scanf("%I64d%I64d%I64d%I64d" , &n , &m , &z, &l) ;
ll ans = 0 ;
ll pre = 0 ;
ll now ;
for(int i = 2;i <= n;i++)
{
now = (pre*m + z)%l ;
ans = ans^(2*now) ;
pre = now ;
}
printf("%I64d\n" , ans) ;
}
}
这篇关于2015 Multi-University Training Contest 5 B(MZL's xor)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!