FGSM方法生成交通信号牌的对抗图像样本

2024-01-14 20:36

本文主要是介绍FGSM方法生成交通信号牌的对抗图像样本,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景:

生成对抗样本,即扰动图像,让原本是“停车”的信号牌识别为“禁止驶入”

实验准备

模型:找一个训练好的,识别交通信号牌的CNN模型,灰度图像

模型地址:GitHub - Daulettulegenov/TSR_CNN: Traffic sign recognition

数据:Chinese Traffic Sign Database(CTSDB)

当下最受欢迎的国内交通标志数据集之一,该数据集容纳6164个交通标志图像,其中有58类交通标志。图像分为4170张图像的训练数据库和包含1994张图像的测试数据库两个子交通标志数据库。

官网链接:Traffic Sign Recogntion Database

数据结构: 

  • 模型在TSR_CNN-main下 
  • 8张目标表图像在 target下 
  • stop下是停止图像
  • no_entry下是禁止通行图像

对抗攻击

1、对抗步骤:

  1. 加载CNN模型
  2. 预测原始的输出类型,可以看到并不能正确的分类,因为是中文字幕“停”而不是 STOP。
  3. 需要迁移训练,让其识别中文的“停”
  4. 测试是否可以识别中文的停
  5. 预测新的输出类型,可以看到能正确的分类,即便是中文的“停”
  6. 生成扰动图像,原始图像增加扰动,让其能识别识别为no entry
  7. 保存扰动图像

2、代码如下:

ART-Adversarial Robustness Toolbox检测AI模型及对抗攻击的工具

import os
import cv2
import numpy as np
import tensorflow as tf
from art.estimators.classification import TensorFlowV2Classifier
from art.attacks.evasion import FastGradientMethod
from tensorflow.keras.models import load_model
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical
from sklearn.model_selection import train_test_splitID_CLASS_MAP = {0: 'Speed Limit 20 km/h',1: 'Speed Limit 30 km/h',2: 'Speed Limit 50 km/h',3: 'Speed Limit 60 km/h',4: 'Speed Limit 70 km/h',5: 'Speed Limit 80 km/h',6: 'End of Speed Limit 80 km/h',7: 'Speed Limit 100 km/h',8: 'Speed Limit 120 km/h',9: 'No passing',10: 'No passing for vechiles over 3.5 metric tons',11: 'Right-of-way at the next intersection',12: 'Priority road',13: 'Yield',14: 'Stop',15: 'No vechiles',16: 'Vechiles over 3.5 metric tons prohibited',17: 'No entry',18: 'General caution',19: 'Dangerous curve to the left',20: 'Dangerous curve to the right',21: 'Double curve',22: 'Bumpy road',23: 'Slippery road',24: 'Road narrows on the right',25: 'Road work',26: 'Traffic signals',27: 'Pedestrians',28: 'Children crossing',29: 'Bicycles crossing',30: 'Beware of ice/snow',31: 'Wild animals crossing',32: 'End of all speed and passing limits',33: 'Turn right ahead',34: 'Turn left ahead',35: 'Ahead only',36: 'Go straight or right',37: 'Go straight or left',38: 'Keep right',39: 'Keep left',40: 'Roundabout mandatory',41: 'End of no passing',42: 'End of no passing by vechiles over 3.5 metric tons'
}def get_class_name(class_no):"""根据类别编号返回对应的交通信号牌的名称:param class_no: 类别编号:return: 交通信号牌的名称"""return ID_CLASS_MAP.get(class_no)def grayscale(img):"""将图像转换为灰度图像"""img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)return imgdef equalize(img):"""进行直方图均衡化"""new_img = cv2.equalizeHist(img)return new_imgdef preprocessing(img):"""归一化处理"""img = equalize(img)img = img / 255return imgdef read_imgs(image_dir, label=0):"""读取图片:param image_dir::param label::return:"""image_files = os.listdir(image_dir)images = []labels = []for image_file in image_files:image_path = os.path.join(image_dir, image_file)image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)  # 以灰度模式读取图片image = cv2.resize(image, (30, 30))img = preprocessing(image)images.append(img)labels.append(label)return images, labelsdef my_predict(model):"""读取指定目录下的所有图像,然后使用模型进行预测,并打印出预测结果。"""print('************my_predict*************')# 读取图片image_dir = r'D:\MyPython\adversarial\target'image_files = os.listdir(image_dir)images = []for image_file in image_files:image_path = os.path.join(image_dir, image_file)image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)  # 以灰度模式读取图片image = cv2.resize(image, (30, 30))img = preprocessing(image)img = img.reshape(1, 30, 30, 1)images.append(img)# PREDICT IMAGEpredictions = model.predict(img)predict_x = model.predict(img)classIndex = np.argmax(predict_x)probabilityValue = np.amax(predictions)print("img path:", image_file, " ==> ", str(classIndex) + " " + str(get_class_name(classIndex)))print(str(round(probabilityValue * 100, 2)) + "%")def reset_model(model):"""修改模型的结构,移除最后的分类层,然后添加一个新的分类层。"""base_model = model# 移除最后的分类层base_model = Model(inputs=base_model.input, outputs=base_model.layers[-2].output)# 添加一个新的分类层output = Dense(2, activation='softmax', name='new_dense')(base_model.output)model = Model(inputs=base_model.input, outputs=output)# 编译模型model.compile(optimizer=Adam(), loss='categorical_crossentropy', metrics=['accuracy'])return modeldef retrain_with2label(model):"""取两个目录下的所有图像,然后使用这些图像和对应的标签来训练模型。"""print('************retrain_with2label*************')image_dir1 = r'D:\MyPython\adversarial\stop'image_dir2 = r'D:\MyPython\adversarial\no_entry'images1, labels1 = read_imgs(image_dir1, 0)images2, labels2 = read_imgs(image_dir2, 1)# 合并图片和标签images = images1 + images2labels = labels1 + labels2images = np.array(images, dtype='float32')# 如果模型的输入形状是(30, 30, 1),那么我们需要增加一个维度if model.input_shape[-1] == 1:images = np.expand_dims(images, axis=-1)labels = np.array(labels)labels = to_categorical(labels, num_classes=2)# 划分训练集和测试集train_images, test_images, train_labels, test_labels = train_test_split(images, labels, test_size=0.2)# 训练模型model.fit(train_images, train_labels, validation_data=(test_images, test_labels), epochs=10)def my_predict2(model):"""读取指定目录下的所有图像,然后使用模型进行预测,并返回预测结果和图像数据。"""# 选择stop的图像,扰动前的images, _ = read_imgs(r'D:\MyPython\adversarial\target')if model.input_shape[-1] == 1:images = np.expand_dims(images, axis=-1)preds = model.predict(images)print('Predicted before:', preds.argmax(axis=1))return imagesdef run_art(images):"""使用对抗性攻击来生成对抗样本,并保存对抗样本和平均扰动。"""# 创建一个目标标签(我们希望模型将0 stop识别为1 no entry)target_label = to_categorical(1, num_classes=2)target_label = np.tile(target_label, (len(images), 1))# 创建ART分类器classifier = TensorFlowV2Classifier(model=model,nb_classes=2,input_shape=(30, 30, 1),loss_object=tf.keras.losses.CategoricalCrossentropy(from_logits=True),clip_values=(0, 1))# 创建FGSM实例attack = FastGradientMethod(estimator=classifier, targeted=True)# 初始化对抗样本为原始图像adv_images = np.copy(images)for i in range(100):  # 最多迭代100次# 生成对抗样本的扰动perturbations = attack.generate(x=adv_images, y=target_label) - adv_images# 计算所有样本的平均扰动avg_perturbation = np.mean(perturbations, axis=0)# 将平均扰动添加到所有对抗样本上adv_images += avg_perturbation# 使用模型对对抗样本进行预测preds = model.predict(adv_images)print('Iteration:', i, 'Predicted after:', preds.argmax(axis=1))# 如果所有的预测结果都为1,那么停止迭代if np.all(preds.argmax(axis=1) == 1):break# 保存对抗样本for i in range(len(adv_images)):# 将图像的数据类型转换为uint8,并且将图像的值范围调整到[0, 255]img = (adv_images[i] * 255).astype(np.uint8)# 保存图像print(f'save adversarial picture: adversarial_image_{i}.png')cv2.imwrite(f'adversarial_image_{i}.png', img)# 归一化平均扰动并保存为图像avg_perturbation = (avg_perturbation - np.min(avg_perturbation)) / (np.max(avg_perturbation) - np.min(avg_perturbation))# 将平均扰动的值范围调整到[0, 255],并转换为uint8类型avg_perturbation = (avg_perturbation * 255).astype(np.uint8)# 将灰度图像转换为RGB图像avg_perturbation_rgb = cv2.cvtColor(avg_perturbation, cv2.COLOR_GRAY2RGB)# 保存图像print(f'save perturbation picture: perturbation_image.png')cv2.imwrite('perturbation_image.png', avg_perturbation_rgb)if __name__ == "__main__":# 加载CNN模型model = load_model(r'D:\MyPython\adversarial\TSR_CNN-main\CNN_model_3.h5', compile=False)# 预测原始的输出类型,可以看到并不能正确的分类,因为是中文字幕“停”而不是 STOP。my_predict(model)# 需要迁移训练,让其识别中文的“停”model = reset_model(model)# 测试是否可以识别中文的停retrain_with2label(model)# 预测新的输出类型,可以看到能正确的分类,即便是中文的“停”images = my_predict2(model)# 生成扰动图像,原始图像增加扰动,让其能识别识别为no entry,保存扰动图像run_art(images)

3、实验结果:

3.1运行日志

************my_predict*************
img path: 052_0001_j.png  ==>  28 Children crossing
99.83%
img path: 052_0005_j.png  ==>  3 Speed Limit 60 km/h
50.46%
img path: 052_0011.png  ==>  3 Speed Limit 60 km/h
52.22%
img path: 052_0013.png  ==>  8 Speed Limit 120 km/h
93.85%
img path: 052_1_0002_1_j.png  ==>  35 Ahead only
26.76%
img path: capture_20240114141426681.bmp  ==>  40 Roundabout mandatory
89.58%
img path: capture_20240114141515221.bmp  ==>  17 No entry
34.44%
img path: capture_20240114141530130.bmp  ==>  33 Turn right ahead
42.66%
************retrain_with2label*************
Epoch 1/10
3/3 [==============================] - 1s 107ms/step - loss: 1.2774 - accuracy: 0.4857 - val_loss: 0.2057 - val_accuracy: 1.0000
Epoch 2/10
3/3 [==============================] - 0s 32ms/step - loss: 0.2968 - accuracy: 0.8714 - val_loss: 0.1363 - val_accuracy: 1.0000
Epoch 3/10
3/3 [==============================] - 0s 33ms/step - loss: 0.1908 - accuracy: 0.9286 - val_loss: 0.1200 - val_accuracy: 1.0000
Epoch 4/10
3/3 [==============================] - 0s 31ms/step - loss: 0.1482 - accuracy: 0.9429 - val_loss: 0.1365 - val_accuracy: 1.0000
Epoch 5/10
3/3 [==============================] - 0s 31ms/step - loss: 0.0665 - accuracy: 1.0000 - val_loss: 0.1404 - val_accuracy: 1.0000
Epoch 6/10
3/3 [==============================] - 0s 32ms/step - loss: 0.0638 - accuracy: 0.9857 - val_loss: 0.1384 - val_accuracy: 1.0000
Epoch 7/10
3/3 [==============================] - 0s 31ms/step - loss: 0.0347 - accuracy: 0.9857 - val_loss: 0.1278 - val_accuracy: 1.0000
Epoch 8/10
3/3 [==============================] - 0s 30ms/step - loss: 0.0228 - accuracy: 0.9857 - val_loss: 0.1143 - val_accuracy: 0.8889
Epoch 9/10
3/3 [==============================] - 0s 32ms/step - loss: 0.0056 - accuracy: 1.0000 - val_loss: 0.1030 - val_accuracy: 0.8889
Epoch 10/10
3/3 [==============================] - 0s 32ms/step - loss: 0.0112 - accuracy: 1.0000 - val_loss: 0.0898 - val_accuracy: 0.8889
Predicted before: [0 0 0 0 0 0 0 0]
Iteration: 0 Predicted after: [0 0 0 0 1 1 0 0]
Iteration: 1 Predicted after: [1 1 1 1 1 1 1 1]
save adversarial picture: adversarial_image_0.png
save adversarial picture: adversarial_image_1.png
save adversarial picture: adversarial_image_2.png
save adversarial picture: adversarial_image_3.png
save adversarial picture: adversarial_image_4.png
save adversarial picture: adversarial_image_5.png
save adversarial picture: adversarial_image_6.png
save adversarial picture: adversarial_image_7.png
save perturbation picture: perturbation_image.png

3.2 结果分析

通过以上日志可知,迭代了两轮后,预测由“停”字标签==>变成了“禁止”标签

8张目标图像+扰动后的对抗图像如下,依稀可见“停”字:

对抗扰动 如下:


 参考:

https://www.cnblogs.com/bonelee/p/17797484.html

国内外交通标志数据集 - 知乎

Keras导入自定义metric模型报错: unknown metric function: Please ensure this object is passed to`custom_object‘_自定义的metric不被调用-CSDN博客

这篇关于FGSM方法生成交通信号牌的对抗图像样本的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/606432

相关文章

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

JavaScript DOM操作与事件处理方法

《JavaScriptDOM操作与事件处理方法》本文通过一系列代码片段,详细介绍了如何使用JavaScript进行DOM操作、事件处理、属性操作、内容操作、尺寸和位置获取,以及实现简单的动画效果,涵... 目录前言1. 类名操作代码片段代码解析2. 属性操作代码片段代码解析3. 内容操作代码片段代码解析4.

SpringBoot3集成swagger文档的使用方法

《SpringBoot3集成swagger文档的使用方法》本文介绍了Swagger的诞生背景、主要功能以及如何在SpringBoot3中集成Swagger文档,Swagger可以帮助自动生成API文档... 目录一、前言1. API 文档自动生成2. 交互式 API 测试3. API 设计和开发协作二、使用

python忽略warnings的几种方法

《python忽略warnings的几种方法》本文主要介绍了几种在Python忽略警告信息的方法,,可以使用Python内置的警告控制机制来抑制特定类型的警告,下面就来介绍一下,感兴趣的可以了解一下... 目录方法 1: 使用 warnings 模块过滤特定类型和消息内容的警告方法 2: 使用 warnin

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11