【天池—街景字符编码识别】Task 2 数据读取与数据扩增

2024-01-14 09:58

本文主要是介绍【天池—街景字符编码识别】Task 2 数据读取与数据扩增,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1 简介
  • 2 学习目标
  • 3 图像读取
  • 3.1 Pillow
    • 3.1.1 安装
    • 3.1.2 基本操作
    • 3.2 OpenCV
  • 4 数据扩增方法
    • 4.1 数据扩增介绍
    • 4.2 常见的数据扩增方法
    • 4.3 常用的数据扩增库
      • 4.3.1 torchvision
      • 4.3.2 imgaug
      • 4.3.3 albumentations
  • 5 PyTorch读取数据(Dataset、DataLoder)

1 简介

  本章主要内容为数据读取、数据扩增方法和Pytorch读取赛题数据三个部分组成。

2 学习目标

  • 学习Python和Pytorch中图像读取
  • 学会扩增方法和Pytorch读取赛题数据

3 图像读取

  在Python中有很多库可以完成数据读取的操作,比较常见的有PillowOpenCV

3.1 Pillow

  Pillow是Python图像处理函式库(Python Imaging Library,PIL)的一个分支。Pillow提供了常见的图像读取和处理的操作,而且可以与ipython notebook无缝集成,是应用比较广泛的库。其官方文档是:https://pillow.readthedocs.io/en/stable/

3.1.1 安装

  如果安装了Anaconda,Pillow就已经可用了。否则,需要在命令行下通过pip安装:

$ pip install pillow

  注意:如果遇到Permission denied安装失败,请加上sudo重试。

  此外,Anaconda的安装见:Anaconda安装、环境的配置以及Jupyter和Spyder的打开

3.1.2 基本操作

读取图片:

from PIL import Image# 打开一个jpg图像文件,注意是当前路径:
im = Image.open('test.jpg')

更多操作可以见官方文档:https://pillow.readthedocs.io/en/stable/

3.2 OpenCV

OpenCV的安装见:64位系统下 python3.7安装OpenCV、OpenGL。64位系统的同学要特别其安装方式。
  OpenCV是一个跨平台的计算机视觉库,最早由Intel开源得来。OpenCV发展的非常早,拥有众多的计算机视觉、数字图像处理和机器视觉等功能。OpenCV在功能上比Pillow更加强大很多,学习成本也高很多。
  OpenCV包含了众多的图像处理的功能,OpenCV包含了你能想得到的只要与图像相关的操作。此外OpenCV还内置了很多的图像特征处理算法,如关键点检测、边缘检测和直线检测等。
  OpenCV官网:https://opencv.org/
  OpenCV Github:https://github.com/opencv/opencv
  OpenCV 扩展算法库:https://github.com/opencv/opencv_contrib

4 数据扩增方法

4.1 数据扩增介绍

  数据扩增(Data Augmentation),在深度学习中非常重要,数据扩增可以增加训练集的样本,同时也可以有效缓解模型过拟合的情况,也可以提高泛化能力

  • 数据扩增为什么有用?
      增加训练集样本的数量。在深度学习模型的训练过程中,数据扩增是必不可少的环节。现有深度学习的参数非常多,一般的模型可训练的参数量基本上都是万到百万级别,而训练集样本的数量很难有这么多。
      其次数据扩增可以扩展样本空间,假设现在的分类模型需要对汽车进行分类,左边的是汽车A,右边为汽车B。如果不使用任何数据扩增方法,深度学习模型会从汽车车头的角度来进行判别,而不是汽车具体的区别。
    在这里插入图片描述
  • 有哪些数据扩增方法?
      数据扩增方法有很多:从颜色空间尺度空间到样本空间,同时根据不同任务数据扩增都有相应的区别。
      对于图像分类,数据扩增一般不会改变标签;
      对于物体检测,数据扩增会改变物体坐标位置;
      对于图像分割,数据扩增会改变像素标签。

4.2 常见的数据扩增方法

  在常见的数据扩增方法中,一般会从图像颜色尺寸形态空间和像素等角度进行变换。当然不同的数据扩增方法可以自由进行组合,得到更加丰富的数据扩增方法。
  以torchvision为例,常见的数据扩增方法包括:

  • transforms.CenterCrop 对图片中心进行裁剪
  • transforms.ColorJitter 对图像颜色的对比度、饱和度和零度进行变
  • transforms.FiveCrop 对图像四个角和中心进行裁剪得到五分图
  • transforms.Grayscale 对图像进行灰度变换
  • transforms.Pad 使用固定值进行像素填充
  • transforms.RandomAffine 随机仿射变换
  • transforms.RandomCrop 随机区域裁剪
  • transforms.RandomHorizontalFlip 随机水平翻转
  • transforms.RandomRotation 随机旋转
  • transforms.RandomVerticalFlip 随机垂直翻转

4.3 常用的数据扩增库

4.3.1 torchvision

  https://github.com/pytorch/vision
  pytorch官方提供的数据扩增库,提供了基本的数据数据扩增方法,可以无缝与torch进行集成;但数据扩增方法种类较少,且速度中等

4.3.2 imgaug

  https://github.com/aleju/imgaug
  imgaug是常用的第三方数据扩增库,提供了多样的数据扩增方法,且组合起来非常方便,速度较快

4.3.3 albumentations

  https://albumentations.readthedocs.io
  是常用的第三方数据扩增库,提供了多样的数据扩增方法,对图像分类、语义分割、物体检测和关键点检测都支持,速度较快

5 PyTorch读取数据(Dataset、DataLoder)

  在Pytorch中数据是通过Dataset进行封装,并通过DataLoder进行并行读取。所以我们只需要重载一下数据读取的逻辑就可以完成数据的读取。

import os, sys, glob, shutil, json
import cv2from PIL import Image
import numpy as npimport torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transformsclass SVHNDataset(Dataset):def __init__(self, img_path, img_label, transform=None):self.img_path = img_pathself.img_label = img_label if transform is not None:self.transform = transformelse:self.transform = Nonedef __getitem__(self, index):img = Image.open(self.img_path[index]).convert('RGB')if self.transform is not None:img = self.transform(img)# 原始SVHN中类别10为数字0lbl = np.array(self.img_label[index], dtype=np.int)lbl = list(lbl)  + (5 - len(lbl)) * [10]return img, torch.from_numpy(np.array(lbl[:5]))def __len__(self):return len(self.img_path)train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]data = SVHNDataset(train_path, train_label,transforms.Compose([# 缩放到固定尺寸transforms.Resize((64, 128)),# 随机颜色变换transforms.ColorJitter(0.2, 0.2, 0.2),# 加入随机旋转transforms.RandomRotation(5),# 将图片转换为pytorch 的tesntor# transforms.ToTensor(),# 对图像像素进行归一化# transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]))

  接下来我们将在定义好的Dataset基础上构建DataLoder,你可以会问有了Dataset为什么还要有DataLoder?其实这两个是两个不同的概念,是为了实现不同的功能

  • Dataset:对数据集的封装,提供索引方式的对数据样本进行读取
  • DataLoder:对Dataset进行封装,提供批量读取的迭代读取
    加入DataLoder后,数据读取代码改为如下:
import os, sys, glob, shutil, json
import cv2from PIL import Image
import numpy as npimport torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transformsclass SVHNDataset(Dataset):def __init__(self, img_path, img_label, transform=None):self.img_path = img_pathself.img_label = img_label if transform is not None:self.transform = transformelse:self.transform = Nonedef __getitem__(self, index):img = Image.open(self.img_path[index]).convert('RGB')if self.transform is not None:img = self.transform(img)# 原始SVHN中类别10为数字0lbl = np.array(self.img_label[index], dtype=np.int)lbl = list(lbl)  + (5 - len(lbl)) * [10]return img, torch.from_numpy(np.array(lbl[:5]))def __len__(self):return len(self.img_path)train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]# 对SVHNDataset进行封装
train_loader = torch.utils.data.DataLoader(SVHNDataset(train_path, train_label,transforms.Compose([transforms.Resize((64, 128)),transforms.ColorJitter(0.3, 0.3, 0.2),transforms.RandomRotation(5),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])), batch_size=10, # 每批样本个数shuffle=False, # 是否打乱顺序num_workers=10, # 读取的线程个数
)for data in train_loader:break

在加入DataLoder后,数据按照批次获取,每批次调用Dataset读取单个样本进行拼接。此时data的格式为:
torch.Size([10, 3, 64, 128]), torch.Size([10, 6])
前者为图像文件,为batchsize * chanel * height * width次序;后者为字符标签。

这篇关于【天池—街景字符编码识别】Task 2 数据读取与数据扩增的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604773

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O