【天池—街景字符编码识别】Task 2 数据读取与数据扩增

2024-01-14 09:58

本文主要是介绍【天池—街景字符编码识别】Task 2 数据读取与数据扩增,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1 简介
  • 2 学习目标
  • 3 图像读取
  • 3.1 Pillow
    • 3.1.1 安装
    • 3.1.2 基本操作
    • 3.2 OpenCV
  • 4 数据扩增方法
    • 4.1 数据扩增介绍
    • 4.2 常见的数据扩增方法
    • 4.3 常用的数据扩增库
      • 4.3.1 torchvision
      • 4.3.2 imgaug
      • 4.3.3 albumentations
  • 5 PyTorch读取数据(Dataset、DataLoder)

1 简介

  本章主要内容为数据读取、数据扩增方法和Pytorch读取赛题数据三个部分组成。

2 学习目标

  • 学习Python和Pytorch中图像读取
  • 学会扩增方法和Pytorch读取赛题数据

3 图像读取

  在Python中有很多库可以完成数据读取的操作,比较常见的有PillowOpenCV

3.1 Pillow

  Pillow是Python图像处理函式库(Python Imaging Library,PIL)的一个分支。Pillow提供了常见的图像读取和处理的操作,而且可以与ipython notebook无缝集成,是应用比较广泛的库。其官方文档是:https://pillow.readthedocs.io/en/stable/

3.1.1 安装

  如果安装了Anaconda,Pillow就已经可用了。否则,需要在命令行下通过pip安装:

$ pip install pillow

  注意:如果遇到Permission denied安装失败,请加上sudo重试。

  此外,Anaconda的安装见:Anaconda安装、环境的配置以及Jupyter和Spyder的打开

3.1.2 基本操作

读取图片:

from PIL import Image# 打开一个jpg图像文件,注意是当前路径:
im = Image.open('test.jpg')

更多操作可以见官方文档:https://pillow.readthedocs.io/en/stable/

3.2 OpenCV

OpenCV的安装见:64位系统下 python3.7安装OpenCV、OpenGL。64位系统的同学要特别其安装方式。
  OpenCV是一个跨平台的计算机视觉库,最早由Intel开源得来。OpenCV发展的非常早,拥有众多的计算机视觉、数字图像处理和机器视觉等功能。OpenCV在功能上比Pillow更加强大很多,学习成本也高很多。
  OpenCV包含了众多的图像处理的功能,OpenCV包含了你能想得到的只要与图像相关的操作。此外OpenCV还内置了很多的图像特征处理算法,如关键点检测、边缘检测和直线检测等。
  OpenCV官网:https://opencv.org/
  OpenCV Github:https://github.com/opencv/opencv
  OpenCV 扩展算法库:https://github.com/opencv/opencv_contrib

4 数据扩增方法

4.1 数据扩增介绍

  数据扩增(Data Augmentation),在深度学习中非常重要,数据扩增可以增加训练集的样本,同时也可以有效缓解模型过拟合的情况,也可以提高泛化能力

  • 数据扩增为什么有用?
      增加训练集样本的数量。在深度学习模型的训练过程中,数据扩增是必不可少的环节。现有深度学习的参数非常多,一般的模型可训练的参数量基本上都是万到百万级别,而训练集样本的数量很难有这么多。
      其次数据扩增可以扩展样本空间,假设现在的分类模型需要对汽车进行分类,左边的是汽车A,右边为汽车B。如果不使用任何数据扩增方法,深度学习模型会从汽车车头的角度来进行判别,而不是汽车具体的区别。
    在这里插入图片描述
  • 有哪些数据扩增方法?
      数据扩增方法有很多:从颜色空间尺度空间到样本空间,同时根据不同任务数据扩增都有相应的区别。
      对于图像分类,数据扩增一般不会改变标签;
      对于物体检测,数据扩增会改变物体坐标位置;
      对于图像分割,数据扩增会改变像素标签。

4.2 常见的数据扩增方法

  在常见的数据扩增方法中,一般会从图像颜色尺寸形态空间和像素等角度进行变换。当然不同的数据扩增方法可以自由进行组合,得到更加丰富的数据扩增方法。
  以torchvision为例,常见的数据扩增方法包括:

  • transforms.CenterCrop 对图片中心进行裁剪
  • transforms.ColorJitter 对图像颜色的对比度、饱和度和零度进行变
  • transforms.FiveCrop 对图像四个角和中心进行裁剪得到五分图
  • transforms.Grayscale 对图像进行灰度变换
  • transforms.Pad 使用固定值进行像素填充
  • transforms.RandomAffine 随机仿射变换
  • transforms.RandomCrop 随机区域裁剪
  • transforms.RandomHorizontalFlip 随机水平翻转
  • transforms.RandomRotation 随机旋转
  • transforms.RandomVerticalFlip 随机垂直翻转

4.3 常用的数据扩增库

4.3.1 torchvision

  https://github.com/pytorch/vision
  pytorch官方提供的数据扩增库,提供了基本的数据数据扩增方法,可以无缝与torch进行集成;但数据扩增方法种类较少,且速度中等

4.3.2 imgaug

  https://github.com/aleju/imgaug
  imgaug是常用的第三方数据扩增库,提供了多样的数据扩增方法,且组合起来非常方便,速度较快

4.3.3 albumentations

  https://albumentations.readthedocs.io
  是常用的第三方数据扩增库,提供了多样的数据扩增方法,对图像分类、语义分割、物体检测和关键点检测都支持,速度较快

5 PyTorch读取数据(Dataset、DataLoder)

  在Pytorch中数据是通过Dataset进行封装,并通过DataLoder进行并行读取。所以我们只需要重载一下数据读取的逻辑就可以完成数据的读取。

import os, sys, glob, shutil, json
import cv2from PIL import Image
import numpy as npimport torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transformsclass SVHNDataset(Dataset):def __init__(self, img_path, img_label, transform=None):self.img_path = img_pathself.img_label = img_label if transform is not None:self.transform = transformelse:self.transform = Nonedef __getitem__(self, index):img = Image.open(self.img_path[index]).convert('RGB')if self.transform is not None:img = self.transform(img)# 原始SVHN中类别10为数字0lbl = np.array(self.img_label[index], dtype=np.int)lbl = list(lbl)  + (5 - len(lbl)) * [10]return img, torch.from_numpy(np.array(lbl[:5]))def __len__(self):return len(self.img_path)train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]data = SVHNDataset(train_path, train_label,transforms.Compose([# 缩放到固定尺寸transforms.Resize((64, 128)),# 随机颜色变换transforms.ColorJitter(0.2, 0.2, 0.2),# 加入随机旋转transforms.RandomRotation(5),# 将图片转换为pytorch 的tesntor# transforms.ToTensor(),# 对图像像素进行归一化# transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]))

  接下来我们将在定义好的Dataset基础上构建DataLoder,你可以会问有了Dataset为什么还要有DataLoder?其实这两个是两个不同的概念,是为了实现不同的功能

  • Dataset:对数据集的封装,提供索引方式的对数据样本进行读取
  • DataLoder:对Dataset进行封装,提供批量读取的迭代读取
    加入DataLoder后,数据读取代码改为如下:
import os, sys, glob, shutil, json
import cv2from PIL import Image
import numpy as npimport torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transformsclass SVHNDataset(Dataset):def __init__(self, img_path, img_label, transform=None):self.img_path = img_pathself.img_label = img_label if transform is not None:self.transform = transformelse:self.transform = Nonedef __getitem__(self, index):img = Image.open(self.img_path[index]).convert('RGB')if self.transform is not None:img = self.transform(img)# 原始SVHN中类别10为数字0lbl = np.array(self.img_label[index], dtype=np.int)lbl = list(lbl)  + (5 - len(lbl)) * [10]return img, torch.from_numpy(np.array(lbl[:5]))def __len__(self):return len(self.img_path)train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]# 对SVHNDataset进行封装
train_loader = torch.utils.data.DataLoader(SVHNDataset(train_path, train_label,transforms.Compose([transforms.Resize((64, 128)),transforms.ColorJitter(0.3, 0.3, 0.2),transforms.RandomRotation(5),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])), batch_size=10, # 每批样本个数shuffle=False, # 是否打乱顺序num_workers=10, # 读取的线程个数
)for data in train_loader:break

在加入DataLoder后,数据按照批次获取,每批次调用Dataset读取单个样本进行拼接。此时data的格式为:
torch.Size([10, 3, 64, 128]), torch.Size([10, 6])
前者为图像文件,为batchsize * chanel * height * width次序;后者为字符标签。

这篇关于【天池—街景字符编码识别】Task 2 数据读取与数据扩增的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604773

相关文章

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下