GPT系列训练与部署——Colossal-AI环境配置与测试验证

2024-01-14 07:30

本文主要是介绍GPT系列训练与部署——Colossal-AI环境配置与测试验证,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        Colossal-AI框架主要特色在于对模型进行并行训练与推理(多GPU),从而提升模型训练效率,可快速实现分布式训练与推理。目前,该框架已集成很多计算机视觉(CV)和自然语言处理(NLP)方向的算法模型,特别是包括GPT和Stable Diffusion等系列大模型的训练和推理。

        本专栏具体更新可关注文章下方公众号,也可关注本专栏。所有相关文章会在《Python从零开始进行AIGC大模型训练与推理》中进行更新,地址为“https://blog.csdn.net/suiyingy/article/details/130169592”。相关AIGC模型体验会在RdFast小程序中同步上线。

1 Colossal-AI安装

        Colossal-AI项目地址为“https://github.com/hpcaitech/ColossalAI”。

1.1 环境要求

        Colossal-AI环境要求如下,注意CUDA驱动版本应不小于CUDA套件版本,驱动更新请参考博文《Docker AIGC等大模型深度学习环境搭建(完整详细版)》,地址为“https://blog.csdn.net/suiyingy/article/details/130285920”。

PyTorch >= 1.11 (PyTorch 2.x 正在适配中)
Python >= 3.7
CUDA >= 11.0
NVIDIA GPU Compute Capability >= 7.0 (V100/RTX20 and higher)
Linux OS

1.2 环境安装

        创建一个名称为clai的Python环境(Python3.8),并安装torch 1.12.1。“ -i https://pypi.tuna.tsinghua.edu.cn/simple”表示使用清华镜像进行安装,通常可提高pip install的安装速度。下面示例所使用的是CUDA 11.3版本对应的Pytorch。用户可前往官网选择相应CUDA版本的安装命令,地址为“https://pytorch.org/get-started/previous-versions/”。

conda create -n clai python=3.8
conda activate clai
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113 -i https://pypi.tuna.tsinghua.edu.cn/simple

1.3 Colossal-AI安装

        Colossal-AI可以通过pip install直接安装,例如“pip install colossalai -i https://pypi.tuna.tsinghua.edu.cn/simple”;也可以下载工程后进行编译安装,步骤如下所示:

git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI
# install dependency
pip install -r requirements/requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
# install colossalai
pip install .

2 例程验证

        Colossal-AI的教程地址为“https://colossalai.org/docs/get_started/run_demo”,模型示例工程为“https://github.com/hpcaitech/ColossalAI-Examples”。示例工程安装步骤如下所示:

git clone https://github.com/hpcaitech/ColossalAI-Examples.git
cd ColossalAI-Examples
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

2.1 ResNet模型训练

        ResNet模型位于ColossalAI-Examples/image/resnet,进入该文件夹下运行如下命令即可开始训练。

cd image/resnet/
# with engine
colossalai run --nproc_per_node 1 train.py
# with trainer
colossalai run --nproc_per_node 1 train.py --use_trainer

 

         程序会默认自动下载CIFAR10手写数字数据集到当前文件夹下的data文件夹,并基于该数据集进行模型训练。如果系统中设置了DATA环境变量,那么数据集将下载至DATA指定目录。

export DATA=/path/to/data
DATA_ROOT = Path(os.environ.get('DATA', './data'))

         

        参数nproc_per_node用于设置GPU的数量,并且可在config.py文件中修改学习率和batch size,通常学习率和batch size的比值保持固定。

new_global_batch_size / new_learning_rate = old_global_batch_size / old_learning rate

        如果训练过程报错“ModuleNotFoundError: No module named 'colossalai._analyzer'”,其解决方式为“cp -r _analyzer/ /path/to/site-packages/colossalai/”,例如“cp -r _analyzer ~/miniconda3/envs/clai/lib/python3.8/site-packages/colossalai/_analyzer”,具体可参考“https://github.com/hpcaitech/ColossalAI/issues/3540”。

        本专栏具体更新可关注文章下方公众号,也可关注本专栏。所有相关文章会在《Python从零开始进行AIGC大模型训练与推理》中进行更新,地址为“https://blog.csdn.net/suiyingy/article/details/130169592”。相关AIGC模型体验会在RdFast小程序中同步上线。

这篇关于GPT系列训练与部署——Colossal-AI环境配置与测试验证的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604390

相关文章

Nginx配置location+rewrite实现隐性域名配置

《Nginx配置location+rewrite实现隐性域名配置》本文主要介绍了Nginx配置location+rewrite实现隐性域名配置,包括基于根目录、条件和反向代理+rewrite配置的隐性... 目录1、配置基于根目录的隐性域名(就是nginx反向代理)2、配置基于条件的隐性域名2.1、基于条件

Linux配置IP地址的三种实现方式

《Linux配置IP地址的三种实现方式》:本文主要介绍Linux配置IP地址的三种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录环境RedHat9第一种安装 直接配置网卡文件第二种方式 nmcli(Networkmanager command-line

VSCode配置Anaconda Python环境的实现

《VSCode配置AnacondaPython环境的实现》VisualStudioCode中可以使用Anaconda环境进行Python开发,本文主要介绍了VSCode配置AnacondaPytho... 目录前言一、安装 Visual Studio Code 和 Anaconda二、创建或激活 conda

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

IDEA连接达梦数据库的详细配置指南

《IDEA连接达梦数据库的详细配置指南》达梦数据库(DMDatabase)作为国产关系型数据库的代表,广泛应用于企业级系统开发,本文将详细介绍如何在IntelliJIDEA中配置并连接达梦数据库,助力... 目录准备工作1. 下载达梦JDBC驱动配置步骤1. 将驱动添加到IDEA2. 创建数据库连接连接参数

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

MyBatis的配置对象Configuration作用及说明

《MyBatis的配置对象Configuration作用及说明》MyBatis的Configuration对象是MyBatis的核心配置对象,它包含了MyBatis运行时所需的几乎所有配置信息,这个对... 目录MyBATis配置对象Configuration作用Configuration 对象的主要作用C

Windows环境下安装达梦数据库的完整步骤

《Windows环境下安装达梦数据库的完整步骤》达梦数据库的安装大致分为Windows和Linux版本,本文将以dm8企业版Windows_64位环境为例,为大家介绍一下达梦数据库的具体安装步骤吧... 目录环境介绍1 下载解压安装包2 根据安装手册安装2.1 选择语言 时区2.2 安装向导2.3 接受协议

SpringBoot基于沙箱环境实现支付宝支付教程

《SpringBoot基于沙箱环境实现支付宝支付教程》本文介绍了如何使用支付宝沙箱环境进行开发测试,包括沙箱环境的介绍、准备步骤、在SpringBoot项目中结合支付宝沙箱进行支付接口的实现与测试... 目录一、支付宝沙箱环境介绍二、沙箱环境准备2.1 注册入驻支付宝开放平台2.2 配置沙箱环境2.3 沙箱