Deit:知识蒸馏与vit的结合 学习笔记(附代码)

2024-01-13 23:12

本文主要是介绍Deit:知识蒸馏与vit的结合 学习笔记(附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 论文地址:https://arxiv.org/abs/2012.12877

代码地址:GitHub - facebookresearch/deit: Official DeiT repository

1.是什么?

DeiT(Data-efficient Image Transformer)是一种用于图像分类任务的神经网络模型,它基于Transformer架构。这个模型的主要目标是在参数较少的情况下实现高效的图像分类。相比于传统的卷积神经网络(CNN),DeiT采用了Transformer的注意力机制,使其能够更好地捕捉图像中的全局关系。
以下是DeiT模型的一些关键特点和组成部分:

  1. 1.Transformer 架构: DeiT采用了Transformer的架构,这是一种自注意力机制的模型。这种架构在自然语言处理任务中取得了显著的成功,DeiT将其成功地应用于图像分类领域。
  2. 2.小模型参数: 为了提高数据效率,DeiT设计为具有相对较少的参数。这使得模型在训练和推理时需要更少的计算资源。
  3. 3.Knowledge Distillation: DeiT使用知识蒸馏(Knowledge Distillation)的方法进行训练。这意味着它通过从一个大型预训练模型中传递知识来训练,而不是从头开始训练。这有助于在资源受限的情况下实现更好的性能。
  4. 4.Patch Embedding: 与传统的卷积层不同,DeiT使用了补丁嵌入(Patch Embedding)来将图像分割成小块,然后对这些块进行变换。
  5. 5.Positional Embeddings: 由于Transformer不涉及卷积层,它需要一种处理输入序列的方式。在DeiT中,位置嵌入(Positional Embeddings)用于为模型提供输入中元素的相对位置信息。

总体而言,DeiT是一个旨在通过Transformer的优势实现图像分类的轻量级模型,适用于数据受限的情况。通过知识蒸馏和小模型参数,它在参数较少的情况下达到了令人满意的性能。

2.为什么?

Transformer的输入是一个序列(Sequence),ViT 所采用的思路是把图像分块(patches),然后把每一块视为一个向量(vector),所有的向量并在一起就成为了一个序列(Sequence),ViT 使用的数据集包括了一个巨大的包含了 300 million images的 JFT-300,这个数据集是私有的,即外部研究者无法复现实验。而且在ViT的实验中作者明确地提到:

意思是当不使用 JFT-300 大数据集时,效果不如CNN模型。也就反映出Transformer结构若想取得理想的性能和泛化能力就需要这样大的数据集。DeiT 作者通过所提出的蒸馏的训练方案,只在 Imagenet 上进行训练,就产生了一个有竞争力的无卷积 Transformer。

3.怎么样?

在 DeiT 模型中,首先需要一个强力的图像分类模型作为teacher model。然后,引入了一个 Distillation Token,然后在 self-attention layers 中跟 class token,patch token 在 Transformer 结构中不断学习。Class token的目标是跟真实的label一致,而Distillation Token是要跟teacher model预测的label一致。蒸馏过程如下图所示。

3.1知识蒸馏

知识蒸馏(Knowledge Distillation)是一种模型训练的技术,旨在通过传递一个大型教师模型的知识来训练一个小型学生模型。这个方法的目标是使得学生模型能够获得与教师模型相似的性能,同时减少学生模型的复杂性和计算成本。
以下是知识蒸馏的关键思想和步骤:

  1. 1.教师模型: 首先,有一个在任务上表现良好的大型教师模型。这个模型通常拥有更多的参数和计算能力,以便更好地捕捉任务的复杂性和结构。
  2. 2.软目标(Soft Targets): 在传统的监督学习中,模型通常以硬标签(one-hot编码的标签)作为目标进行训练。而在知识蒸馏中,使用了软目标,这是由教师模型输出的概率分布。这样的软目标包含了关于样本的更丰富信息,使得学生模型可以学到更多的任务相关知识。
  3. 3.温度参数: 软目标的概率分布可以通过温度参数进行调节。较高的温度使概率分布更平滑,有助于学生模型更好地学到教师模型的知识。
  4. 4.学生模型: 有了教师模型和软目标,接下来就是训练学生模型。学生模型通常是一个比教师模型简化的小型模型,可以在资源受限的环境中更轻松地进行推理。
  5. 5.蒸馏损失: 为了引导学生模型学习教师模型的知识,引入了蒸馏损失。这个损失函数用于比较学生模型的输出概率分布和教师模型的输出概率分布,促使学生模型模仿教师模型的行为。

知识蒸馏的优势在于,通过传递教师模型的知识,可以在小型模型上实现接近教师模型性能的效果。这对于移动设备、嵌入式系统或其他计算资源受限的环境中的部署非常有用。

具体方法:

第一步是训练Net-T;第二步是在高温 T 下,蒸馏 Net-T 的知识到 Net-S。

训练 Net-T 的过程很简单,而高温蒸馏过程的目标函数由distill loss(对应soft target)和student loss(对应hard target)加权得到:

Deit 中使用 Conv-Based 架构作为教师网络,以 soft 的方式将归纳偏置传递给学生模型,将局部性的假设通过蒸馏方式引入 Transformer 中,取得了不错的效果。

3.2Distillation Token

Distillation Token 和 ViT 中的 class token 一起加入 Transformer 中,和class token 一样通过 self-attention 与其它的 embedding 一起计算,并且在最后一层之后由网络输出。

而 Distillation Token 对应的这个输出的目标函数就是蒸馏损失。Distillation Token 允许模型从教师网络的输出中学习,就像在常规的蒸馏中一样,同时也作为一种对class token的补充。

3.3代码实现

class DistilledVisionTransformer(VisionTransformer):def __init__(self, *args, **kwargs):super().__init__(*args, **kwargs)self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))num_patches = self.patch_embed.num_patchesself.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 2, self.embed_dim))self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity()trunc_normal_(self.dist_token, std=.02)trunc_normal_(self.pos_embed, std=.02)self.head_dist.apply(self._init_weights)def forward_features(self, x):# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py# with slight modifications to add the dist_tokenB = x.shape[0]x = self.patch_embed(x)cls_tokens = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanksdist_token = self.dist_token.expand(B, -1, -1)x = torch.cat((cls_tokens, dist_token, x), dim=1)x = x + self.pos_embedx = self.pos_drop(x)for blk in self.blocks:x = blk(x)x = self.norm(x)return x[:, 0], x[:, 1]def forward(self, x):x, x_dist = self.forward_features(x)x = self.head(x)x_dist = self.head_dist(x_dist)if self.training:return x, x_distelse:# during inference, return the average of both classifier predictionsreturn (x + x_dist) / 2

参考:ViT、Deit这类视觉transformer是如何处理变长序列输入的?

DeiT:使用Attention蒸馏Transformer

这篇关于Deit:知识蒸馏与vit的结合 学习笔记(附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/603121

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引