本文主要是介绍Mr. Kitayuta's Colorful Graph,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
数据量很小用搜索或并查集应该都能过
题目要求:
从一个点到另一个点可以经过多少条不同的边
思路:
为每一条不同编号的边建一个并查集,查看有多少条边可以使这两个点有共同的父节点
B. Mr. Kitayuta's Colorful Graph
Mr. Kitayuta has just bought an undirected graph consisting of n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.
Mr. Kitayuta wants you to process the following q queries.
In the i-th query, he gives you two integers — ui and vi.
Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vidirectly or indirectly.
Input
The first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.
The next m lines contain space-separated three integers — ai, bi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).
The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries.
Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.
Output
For each query, print the answer in a separate line.
Examples
4 5 1 2 1 1 2 2 2 3 1 2 3 3 2 4 3 3 1 2 3 4 1 4
2 1 0
5 7 1 5 1 2 5 1 3 5 1 4 5 1 1 2 2 2 3 2 3 4 2 5 1 5 5 1 2 5 1 5 1 4
1 1 1 1 2
#include<stdio.h>
#include<string.h>
#define maxn 105
int pre[maxn][maxn];
void Union(int x,int y,int z);
int find(int a,int b);
int main()
{int n,m,q;memset(pre,0,sizeof(pre));scanf("%d%d",&n,&m);for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){pre[i][j]=j;}}for(int i=0;i<m;i++){int a,b,c;scanf("%d%d%d",&a,&b,&c);Union(a,b,c);}scanf("%d",&q);for(int i=0;i<q;i++){int a,b,ans=0;scanf("%d%d",&a,&b);for(int j=1;j<=m;j++){int fa,fb;fa=find(a,j);fb=find(b,j);if(fa==fb)ans++;}printf("%d\n",ans);}return 0;
}
void Union(int x,int y,int z)
{int fx,fy;fx=find(x,z);fy=find(y,z);if(fx!=fy)pre[z][fx]=fy;
}
int find(int a,int b)
{int r=a;while(r!=pre[b][r])r=pre[b][r];while(a!=pre[b][a]){int s=a;a=pre[b][a];pre[b][s]=r;}return r;
}
这篇关于Mr. Kitayuta's Colorful Graph的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!