本文主要是介绍一份保姆级的 Stable Diffusion 部署教程,开启你的炼丹之路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
市面上有很多可以被用于AI绘画的应用,例如DALL-E、Midjourney、NovelAI等,他们的大部分都依托云端服务器运行,一部分还需要支付会员费用来购买更多出图的额度。
在2022年8月,一款叫做Stable Diffusion的应用,通过算法迭代将AI绘画的精细度提上了一个新的台阶,并能在以秒计数的时间内完成产出,还可以在一台有“民用级”显卡的电脑上运行。
通过Stable Diffusion,可以绘制出各种风格的作品,比如动漫风、插画立绘、国风水墨、3D建模,甚至是照片级的拟真图像,而借助诸如LoRa、ControlNet等衍生功能,还可以做到精准控制美术风格、角色细节、姿势、动作、构图等。
更更重要的是,它是全面开源的,这意味着你可以在自己的电脑上部署整个程序,使用它出图、作画是完全免费而且不限量的!市面上大多数商业级的AI绘画应用,都是基于SD去开发的。
在经历了一系列的探索后,我总结出了一套零基础的、非常好上手的部署安装Stable Diffusion WebUI以及相关工具和插件的保姆级教程,请查收。
内容教程,共计1.2w字,梳理不易,喜欢点赞、收藏、关注。需要继续交流,可以加入我们
文章目录
- 通俗易懂讲解大模型系列
- 技术交流
- 一、创建GPU主机实例
- 1.1 创建GPU云主机
- 1.2 创建安全组并绑定
- 二、环境安装
- 2.1 安装GPU驱动
- 2.2 安装CUDA
- 2.3 安装Python 3.10
- 2.4 安装Anaconda
- 2.5 安装PyTorch
- 三、部署Stable Diffusion WebUI
- 3.1 下载stable-diffusion-webui
- 3.2 安装依赖
- 3.3 启动stable-diffusion-webui
- 3.4 使用stable-diffusions生成图片
- 四、常用相关工具与插件
- 4.1 安装LoRa插件Additional Networks
- 4.2 安装ControlNet
- 4.3 Jupyter Notebook
- 4.4 模型训练工具Kohya\_ss
- 五、总结
通俗易懂讲解大模型系列
-
用通俗易懂的方式讲解:大模型 RAG 在 LangChain 中的应用实战
-
用通俗易懂的方式讲解:一文讲清大模型 RAG 技术全流程
-
用通俗易懂的方式讲解:如何提升大模型 Agent 的能力?
-
用通俗易懂的方式讲解:使用 Mistral-7B 和 Langchain 搭建基于PDF文件的聊天机器人
-
用通俗易懂的方式讲解:ChatGPT 开放的多模态的DALL-E 3功能,好玩到停不下来!
-
用通俗易懂的方式讲解:结合检索和重排序模型,改善大模型 RAG 效果明显
-
用通俗易懂的方式讲解:基于扩散模型(Diffusion),文生图 AnyText 的效果太棒了
-
用通俗易懂的方式讲解:在 CPU 服务器上部署 ChatGLM3-6B 模型
-
用通俗易懂的方式讲解:ChatGLM3-6B 功能原理解析
-
用通俗易懂的方式讲解:使用 LangChain 和大模型生成海报文案
-
用通俗易懂的方式讲解:一个强大的 LLM 微调工具 LLaMA Factory
-
用通俗易懂的方式讲解:ChatGLM3-6B 部署指南
-
用通俗易懂的方式讲解:LangChain Agent 原理解析
-
用通俗易懂的方式讲解:HugggingFace 推理 API、推理端点和推理空间使用详解
-
用通俗易懂的方式讲解:使用 LangChain 封装自定义的 LLM,太棒了
-
用通俗易懂的方式讲解:使用 FastChat 部署 LLM 的体验太爽了
-
用通俗易懂的方式讲解:基于 Langchain 和 ChatChat 部署本地知识库问答系统
-
用通俗易懂的方式讲解:使用 Docker 部署大模型的训练环境
-
用通俗易懂的方式讲解:在 Ubuntu 22 上安装 CUDA、Nvidia 显卡驱动、PyTorch等大模型基础环境
-
用通俗易懂的方式讲解:Llama2 部署讲解及试用方式
-
用通俗易懂的方式讲解:LangChain 知识库检索常见问题及解决方案
-
用通俗易懂的方式讲解:基于 LangChain 和 ChatGLM2 打造自有知识库问答系统
-
用通俗易懂的方式讲解:代码大模型盘点及优劣分析
-
用通俗易懂的方式讲解:Prompt 提示词在开发中的使用
-
用通俗易懂的方式讲解:万字长文带你入门大模型
技术交流
技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。
本文完整代码、相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。
方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:来自CSDN + 技术交流
一、创建GPU主机实例
1.1 创建GPU云主机
京东云GPU云主机的标准型的配置包含Tesla P40 24G显卡、12核48G,跑Stable Diffusion体验非常好,配置推荐如下:
1.2 创建安全组并绑定
首先在左侧菜单【安全组】创建一个安全组,在【入站规则】和【出站规则】中分别添加并开放7860、7861、8080、8888端口。其中
然后在实例详情中,点击【安全组】-【绑定安全组】绑定刚刚创建的安全组。
二、环境安装
2.1 安装GPU驱动
在英伟达官网根据显卡型号、操作系统、CUDA等查询驱动版本。官网查询链接https://www.nvidia.com/Download/index.aspx?lang=en-us
注意这里的CUDA版本,如未安装CUDA可以先选择一个版本,稍后再安装CUDA.
点击Search
如上图,查询到合适的版本为510. 然后可以使用apt安装对应驱动版本,使用apt安装更方便一些。
# 安装510版本驱动
apt install nvidia-driver-510
# 查看驱动信息
nvidia-smi
如安装成功,则可以展示如下提示信息。
2.2 安装CUDA
访问英伟达开发者网站先选择CUDA版本(版本要对应2.1中GPU驱动支持的CUDA版本),
再根据操作系统选择对应CUDA安装命令,访问链接https://developer.nvidia.com/cuda-toolkit-archive
如上面安装确定所选择驱动对应的CUDA版本为11.6,根据安装命令安装, 以下命令适用Ubuntu 20.04 x86_64, GPU驱动510版本
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.6.2/local_installers/cuda-repo-ubuntu2004-11-6-local_11.6.2-510.47.03-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2004-11-6-local_11.6.2-510.47.03-1_amd64.deb
sudo apt-key add /var/cuda-repo-ubuntu2004-11-6-local/7fa2af80.pub
sudo apt-get update
sudo apt-get -y install cuda
2.3 安装Python 3.10
Stable Diffusion WebUI目前最低支持Python 3.10,所以直接安装3.10版本,安装命令:
apt install software-properties-commonadd-apt-repository ppa:deadsnakes/ppaapt updateapt install python3.10python3.10 --verison
PIP设置国内源,由于默认源在国外,所以安装可能经常会出现timeout等问题,使用国内源可以很大程度避免下载包timeout的情况。将如下内容复制到文件~/.pip/pip.conf当中,如没有该文件,先创建touch ~/.pip/pip.conf。
[global] index-url = https://pypi.tuna.tsinghua.edu.cn/simple[install]trusted-host = https://pypi.tuna.tsinghua.edu.cn
2.4 安装Anaconda
非常推荐使用Anaconda。Anaconda可以便捷获取包且对包能够进行管理,同时对Python环境可以统一管理的发行版本。安装命令也很简单:
wget https://repo.anaconda.com/archive/Anaconda3-2023.03-1-Linux-x86_64.shbash ./Anaconda3-2023.03-1-Linux-x86_64.sh
创建Python3.10.9环境,并使用该环境
conda create -n python3.10.9 python==3.10.9
conda activate python3.10.9
2.5 安装PyTorch
首先在PyTorch官网查询对应CUDA版本的Torch,如上述章节2.2中CUDA 11.6需要安装pytorch1.13.1
# 使用conda安装,两种安装方式二选一
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia# 使用pip安装,两种安装方式二选一
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
三、部署Stable Diffusion WebUI
3.1 下载stable-diffusion-webui
注意首先激活Python3.10环境:
conda activate python3.10.9
然后下载stable-diffusion-webui
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
3.2 安装依赖
cd到stable-diffusion-webui目录安装相应的依赖,如有访问网络超时、失败等,注意按照章节2.3中设置国内源,如果再次失败,重试几次一般都可完成安装。
cd stable-diffusion-webui
pip install -r requirements_versions.txt
pip install -r requirements.txt
3.3 启动stable-diffusion-webui
安装完成后,执行如下启动命令:
python launch.py --listen --enable-insecure-extension-access
这一步骤会下载一些常用模型,如果遇到下载失败,根据报错提示在huggingface.co下载模型放到对应目录,如下载stable-diffusion-v1-5模型,搜索找到https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main
点击图中下载按钮,下载v1-5-pruned-emaonly.safetensors到stable-diffusion-webui/models/Stable-diffusion目录,其他模型同理。
模型下载完成,再次执行启动命令,提示已启动到7860端口,则可以通过IP+7860端口访问:
公网建议设置访问密码,注意替换下面命令当中的username:password为用户名、密码。
python launch.py --listen --enable-insecure-extension-access --gradio-auth username:password
3.4 使用stable-diffusions生成图片
下载一个模型到/stable-diffusion-webui/models/Stable-diffusion目录,模型可以在https://civitai.com/查找,如下图所用majicMIX realistic模型。下载完成后点击左上角刷新按钮,然后选择刚下载的模型,输入Promot和参数即可生成图片。
附上图所用Promot和参数
Prompt
1 girl a 24 y o woman, blonde, dark theme, soothing tones, muted colors, high contrast, look at at viewer, contrasty , vibrant , intense, stunning, captured in the late afternoon sunlight, using a Canon EOS R6 and a 16-35mm to capture every detail and angle, with emphasis on the lighting and shadows, late afternoon sunlight, 8K
Negative prompt
(deformed, distorted, disfigured, doll:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, 3d, illustration, cartoon, flat , dull , soft, (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs,
其他参数
四、常用相关工具与插件
4.1 安装LoRa插件Additional Networks
使用Lora必不可少的插件,Additional Networks可以用来控制checkpoint+LoRa或者多个LoRa模型生成混合风格的图像,并且可以设置Lora模型的Weight。安装方式如下:
打开stable-diffusion-webui,点击【Extensions】- 【Install from URL】输入https://ghproxy.com/https://github.com/kohya-ss/sd-webui-additional-networks.git
然后点击【Install】等待安装,直到在【Installed】中显示,然后直接用命令重启stable-diffusion-webui(不是reload webui),强烈推荐所有插件安装完成都命令重启stable-diffusion-webui,可以免去很多麻烦。
最后点击【Setting】-【Additional Networks】输入LoRa文件夹的绝对路径,如/root/stable-diffusion-webui/models/Lora(示例,请填写你的系统路径),然后【Reload UI】等待重启完成。
然后可以在【txt2img】或【img2img】中选择Lora模型并设置权重使用。
4.2 安装ControlNet
作为Stable Diffusion必装插件,ControlNet 允许用户对生成的图像进行精细的控制,以获得更好的视觉效果,ControlNet让AI绘画的可控性有了质的突变,让AGIC真正的可以投入生产使用。
打开stable-diffusion-webui,点击【Extensions】- 【Install from URL】输入https://ghproxy.com/https://github.com/Mikubill/sd-webui-controlnet.git
然后点击【Install】等待安装,直到在【Installed】中显示,然后直接用命令重启stable-diffusion-webui(不是reload webui)。
由于controlNet会使用很多模型,所以在重启的时候会默认下载,如果下载失败或超时,需要手动下载到controlnet目录。
访问huggingface.co找到controlnet的地址:https://huggingface.co/lllyasviel/ControlNet-v1-1/tree/main
手动下载上面模型文件到stable-diffusion-webui/extensions/sd-webui-controlnet/models目录,查看已下载controlnet模型:
下载完成,重启stable-diffusion-webui即可在【txt2img】或【img2img】使用。
4.3 Jupyter Notebook
Jupyter Notebook是一个基于网页的交互环境,可以用来编辑、运行Python代码,可视化看到运行结果。同时提供了基础的文件树操作功能等。
如已在章节2.4中安装了Anaconda,直接使用以下命令运行notebook
jupyter notebook --allow-root --NotebookApp.token='设置你的token'
访问IP+8888端口,可以开始使用notebook
4.4 模型训练工具Kohya_ss
Kohya_ss是公认推荐训练Stable Diffusion模型的可视化工具,尤其在windows平台支持比较好,经过尝试在linux直接使用会遇到各种环境原因的问题,为了避免这些问题,十分推荐使用docker安装。
先按照docker官方文档安装好docker,Ubuntu安装docker文档:https://docs.docker.com/engine/install/ubuntu/
由于在docker容器中需要使用GPU资源,所以还需要先安装NVIDIA Container Toolkit
sudo apt-get update \&& sudo apt-get install -y nvidia-container-toolkit-base# 查看是否安装成功
nvidia-ctk --version
然后下载kohya_ss:
git clone https://github.com/bmaltais/kohya_ss.git
如下图,修改kohya_ss/docker-compose.yaml文件端口为0.0.0.0:7861:7860(将kohya_ss的7860端口映射到宿主机的7861端口,因为7860会被Stable Diffusion WebUI占用),
启动参数设置为"–username xxxx --password xxxx --headless",注意替换xxxx为需要设置的账号密码
然后执行
docker compose build # 首次执行需要builddocker compose run --service-ports kohya-ss-gui
过程中会从huggingface.co下载模型文件,如果下载失败,可以尝试手动下载到目录kohya_ss/.cache/user/huggingface/hub/models–openai–clip-vit-large-patch14/snapshots/8d052a0f05efbaefbc9e8786ba291cfdf93e5bff,最后的hash值注意改成对应的版本。
下载地址https://huggingface.co/openai/clip-vit-large-patch14/tree/main,注意下载全部文件
下载完成,然后访问端口+7861端口,可以开始使用Kohya_ss训练模型了。
五、总结
安装完Stable Diffusion及上面的推荐插件,你的Stable Diffuion已经具备强大的生产力。后续我会继续同大家一起探索和分享更多的使用经验,敬请期待系列文章下一集。
这篇关于一份保姆级的 Stable Diffusion 部署教程,开启你的炼丹之路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!