操作系统课程设计:常用页面置换算法(OPT、FIFO、LRU)的实现及缺页率的计算(C语言)

本文主要是介绍操作系统课程设计:常用页面置换算法(OPT、FIFO、LRU)的实现及缺页率的计算(C语言),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

名人说:莫听穿林打叶声,何妨吟啸且徐行。—— 苏轼《定风波·莫听穿林打叶声》
Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder)

目录

      • 一、效果图
      • 二、代码(带注释)
      • 三、说明

一、效果图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、代码(带注释)

//创作者:Code_流苏(CSDN)
//未经允许,禁止转载发布,可自己学习使用
//代码实现时期:大二操作系统期末
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <windows.h>
#define N 320 //指令数
#define M 32 //页数
#define P 4 //内存块数
#define Q 10 //每页指令数
int i, m, m1, m2, choice;
int order[N]; //指令序列数组//OPT算法
void OPT(int order[])
{int i, j, k, max, index, count = 0;int memory[P]; //内存块数组int flag[M]; //标记数组,记录每个页面是否在内存中int next[M]; //记录每个页面下一次出现的位置//初始化内存块和标记数组for (i = 0; i < P; i++)memory[i] = -1;for (i = 0; i < M; i++)flag[i] = 0;//遍历指令序列for (i = 0; i < N; i++){int page = order[i] / Q; //计算当前指令所在的页面号if (flag[page] == 1) //如果页面已经在内存中,显示物理地址{printf("指令%d的物理地址为%d\n", order[i], memory[page] * Q + order[i] % Q);}else //如果页面不在内存中,发生缺页{count++; //缺页次数加一int empty = -1; //记录是否有空闲的内存块for (j = 0; j < P; j++){if (memory[j] == -1) //找到空闲的内存块{empty = j;break;}}if (empty != -1) //如果有空闲的内存块,直接调入页面{memory[empty] = page;flag[page] = 1;printf("指令%d的物理地址为%d\n", order[i], empty * Q + order[i] % Q);}else //如果没有空闲的内存块,需要进行页面置换{//计算每个页面下一次出现的位置for (j = 0; j < M; j++){next[j] = N + 1; //默认为无穷大for (k = i + 1; k < N; k++){if (order[k] / Q == j) //找到下一次出现的位置{next[j] = k;break;}}}//找到下一次出现最晚的页面,即最佳置换页面max = next[memory[0]];index = 0;for (j = 1; j < P; j++){if (next[memory[j]] > max){max = next[memory[j]];index = j;}}//置换该页面,并显示物理地址flag[memory[index]] = 0;memory[index] = page;flag[page] = 1;printf("指令%d的物理地址为%d\n", order[i], index * Q + order[i] % Q);}}}printf("OPT算法的缺页率为%.2f%%\n", count * 100.0 / N); //显示缺页率
}//FIFO算法
void FIFO(int order[])
{int i, j,  index, count = 0;int memory[P]; //内存块数组int flag[M]; //标记数组,记录每个页面是否在内存中int queue[P]; //队列数组,记录每个内存块中的页面进入的先后顺序//初始化内存块、标记数组和队列数组for (i = 0; i < P; i++)memory[i] = -1;for (i = 0; i < M; i++)flag[i] = 0;for (i = 0; i < P; i++)queue[i] = -1;//遍历指令序列for (i = 0; i < N; i++){int page = order[i] / Q; //计算当前指令所在的页面号if (flag[page] == 1) //如果页面已经在内存中,显示物理地址{printf("指令%d的物理地址为%d\n", order[i], memory[page] * Q + order[i] % Q);}else //如果页面不在内存中,发生缺页{count++; //缺页次数加一int empty = -1; //记录是否有空闲的内存块for (j = 0; j < P; j++){if (memory[j] == -1) //找到空闲的内存块{empty = j;break;}}if (empty != -1) //如果有空闲的内存块,直接调入页面,并更新队列{memory[empty] = page;flag[page] = 1;printf("指令%d的物理地址为%d\n", order[i], empty * Q + order[i] % Q);for (j = 0; j < P; j++){if (queue[j] == -1){queue[j] = empty;break;}}}else //如果没有空闲的内存块,需要进行页面置换{//找到队列头部的内存块,即最先进入的内存块,作为置换对象index = queue[0];//置换该内存块中的页面,并显示物理地址flag[memory[index]] = 0;memory[index] = page;flag[page] = 1;printf("指令%d的物理地址为%d\n", order[i], index * Q + order[i] % Q);//更新队列,将队列头部的元素移到队尾for (j = 0; j < P - 1; j++)queue[j] = queue[j + 1];queue[P - 1] = index;}}}printf("FIFO算法的缺页率为%.2f%%\n", count * 100.0 / N); //显示缺页率
}//LRU算法
void LRU(int order[])
{int i, j, min, index, count = 0;int memory[P]; //内存块数组int flag[M]; //标记数组,记录每个页面是否在内存中int last[M]; //记录每个页面最近一次出现的位置//初始化内存块和标记数组for (i = 0; i < P; i++)memory[i] = -1;for (i = 0; i < M; i++)flag[i] = 0;//遍历指令序列for (i = 0; i < N; i++){int page = order[i] / Q; //计算当前指令所在的页面号if (flag[page] == 1) //如果页面已经在内存中,显示物理地址,并更新最近一次出现的位置{printf("指令%d的物理地址为%d\n", order[i], memory[page] * Q + order[i] % Q);last[page] = i;}else //如果页面不在内存中,发生缺页{count++; //缺页次数加一int empty = -1; //记录是否有空闲的//内存块for (j = 0; j < P; j++){if (memory[j] == -1) //找到空闲的内存块{empty = j;break;}}if (empty != -1) //如果有空闲的内存块,直接调入页面,并更新最近一次出现的位置{memory[empty] = page;flag[page] = 1;printf("指令%d的物理地址为%d\n", order[i], empty * Q + order[i] % Q);last[page] = i;}else //如果没有空闲的内存块,需要进行页面置换{//找到最近一次出现最早的页面,即最近最久未使用的页面,作为置换对象min = last[memory[0]];index = 0;for (j = 1; j < P; j++){if (last[memory[j]] < min){min = last[memory[j]];index = j;}}//置换该页面,并显示物理地址,并更新最近一次出现的位置flag[memory[index]] = 0;memory[index] = page;flag[page] = 1;printf("指令%d的物理地址为%d\n", order[i], index * Q + order[i] % Q);last[page] = i;}}}printf("LRU算法的缺页率为%.2f%%\n", count * 100.0 / N); //显示缺页率
}void menu()
{while (1) //使用一个循环,让用户可以多次选择算法{system("cls");printf("请选择使用哪种算法:\n");printf("1. OPT算法\n");printf("2. FIFO算法\n");printf("3. LRU算法\n");printf("0. 退出程序\n");printf("我的选择是:");scanf("%d", &choice); //输入选择switch (choice) //根据选择调用相应的算法{case 1:printf("使用OPT算法:\n");OPT(order);break;case 2:printf("使用FIFO算法:\n");FIFO(order);break;case 3:printf("使用LRU算法:\n");LRU(order);break;case 0:printf("已退出程序,感谢您的使用!\n");return ; //退出程序default:printf("输入错误,请重新输入\n");break;}printf("按任意键回到菜单页\n");system("pause");Sleep(100);}
}//主函数
int main()
{int flag=0;srand(time(NULL)); //设置随机数种子//生成指令序列m = rand() % N; //随机选取一条起始执行指令,其序号为morder[0] = m; //将其放入指令序列数组中for (i = 1; i < N; i++){if (i % 4 == 1) //顺序执行下一条指令,即序号为m+1的指令{m++;order[i] = m;}else if (i % 4 == 2) //通过随机数,跳转到前地址部分[0,m-1]中的某条指令处,其序号为m1{m1 = rand() % m;order[i] = m1;}else if (i % 4 == 3) //顺序执行下一条指令,即序号为m1+1的指令{m1++;order[i] = m1;}else //通过随机数,跳转到后地址部分[m1+2,319]中的某条指令处,其序号为m2{m2 = rand() % (N - m1 - 2) + m1 + 2;order[i] = m2;}}printf("指令序列为:\n");for (i = 0; i < N; i++)printf("%d ", order[i]);printf("\n");printf("是否进入菜单?(1代表是,0代表否)\n");printf("请输入您的选择:");scanf("%d",&flag);if(flag==1){menu();}return 0;
}

三、说明

上述代码实现的是一个模拟操作系统页面置换算法的程序。主要实现了三种页面置换算法:最佳置换(OPT)、先进先出(FIFO)和最近最久未使用(LRU)。此外,还包含一个生成指令序列的部分和一个简单的用户界面来选择不同的置换算法。下面是对代码主要部分的解释:

  1. 程序流程

    • 首先,程序使用随机数生成器生成一个模拟的指令序列。
    • 接着,程序提供了一个菜单,让用户选择要使用的页面置换算法。
    • 根据用户的选择,程序将展示所选算法的页面置换过程和缺页率。
  2. 页面置换算法的实现

    • OPT算法:在页面置换时,选择将来最长时间内不会被访问的页面进行置换。
    • FIFO算法:按照页面进入内存的顺序进行置换,最先进入的页面最先被置换。
    • LRU算法:在页面置换时,选择最长时间没有被访问的页面进行置换。
  3. 关键变量

    • N:指令数。
    • M:页数。
    • P:内存块数。
    • Q:每页指令数。
    • order[]:存储指令序列的数组。
    • memory[]:表示内存块的数组,存储当前各内存块中的页面。
    • flag[]:标记数组,记录每个页面是否在内存中。
  4. 生成指令序列

    • 指令序列生成遵循一定的规则,以模拟程序的执行过程。
  5. 用户交互

    • 程序通过打印菜单和接收用户输入来控制算法的选择和程序的流程。
  6. 输出

    • 对于每一条指令,程序将输出其物理地址。
    • 在算法执行完毕后,程序将输出该算法的缺页率。

这个程序通过实际的模拟和数据,可以更好帮助我们理解各种页面置换算法的工作原理和性能差异。

Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder)
点赞加关注,收藏不迷路!本篇文章对你有帮助的话,还请多多点赞支持!

这篇关于操作系统课程设计:常用页面置换算法(OPT、FIFO、LRU)的实现及缺页率的计算(C语言)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/601277

相关文章

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端