基于opencv的指针式仪表的识别与读数

2024-01-13 09:36

本文主要是介绍基于opencv的指针式仪表的识别与读数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对于指针式仪表的识别与读数,可以通过以下步骤使用OpenCV实现

  • 读取图像:使用cv2.imread()函数读取要处理的仪表图像。
    在这里插入图片描述

  • 灰度转换:使用cv2.cvtColor()函数将彩色图像转换为灰度图像。这是因为灰度图像只有一个通道,便于后续的处理。

  • 平滑滤波:为了去除噪声,可以使用中值滤波或高斯滤波。中值滤波通过将每个像素替换为其邻域像素的中值来消除噪声。高斯滤波则是通过计算像素周围邻域像素的加权平均值来平滑图像。你可以根据实际情况选择适合的滤波方法,例如使用cv2.medianBlur()进行中值滤波或使用cv2.GaussianBlur()进行高斯滤波。对于指针式仪表的识别与读数,可以通过以下步骤使用OpenCV实现:

  • 读取图像:使用cv2.imread()函数读取要处理的仪表图像。

  • 灰度转换:使用cv2.cvtColor()函数将彩色图像转换为灰度图像。这是因为灰度图像只有一个通道,便于后续的处理。
    在这里插入图片描述

  • 平滑滤波:为了去除噪声,可以使用中值滤波或高斯滤波。中值滤波通过将每个像素替换为其邻域像素的中值来消除噪声。高斯滤波则是通过计算像素周围邻域像素的加权平均值来平滑图像。你可以根据实际情况选择适合的滤波方法,例如使用cv2.medianBlur()进行中值滤波或使用cv2.GaussianBlur()进行高斯滤波。

  • 边缘检测:使用Canny边缘检测算法来检测图像中的边缘。Canny边缘检测算法首先使用Sobel算子计算图像的梯度强度和方向,然后通过非最大抑制和双阈值处理来提取出真正的边缘。使用cv2.Canny()函数可以方便地进行Canny边缘检测,你可以根据实际情况调整阈值参数。

  • 轮廓提取:使用cv2.findContours()函数来提取边缘图像中的轮廓。轮廓是连续的曲线,可以用来表示物体的形状。通过设置适当的参数,可以选择性地提取出仪表盘的指针轮廓。

  • 指针识别:对于仪表指针,通常可以通过以下特征进行识别:

  • 面积大小:指针通常具有相对较大的面积。

  • 形状:指针通常是细长的形状,可以通过检查轮廓的形状来判断是否为指针。

  • 位置:指针通常位于仪表盘中心附近。

    可以遍历提取到的轮廓,根据以上特征来筛选出指针轮廓。

  • 读数计算:对于选定的指针轮廓,可以通过计算指针与仪表盘中心之间的夹角来得到仪表的读数。可以使用cv2.minEnclosingCircle()函数找到指针的中心点,然后计算指针中心点与仪表盘中心点之间的夹角。

以上就是通过OpenCV对指针式仪表进行读数的一般步骤。根据实际情况,你可能需要调整参数、采取不同的滤波方法或添加其他处理步骤来适应不同的仪表图像。
在这里插入图片描述

  1. 边缘检测:使用Canny边缘检测算法来检测图像中的边缘。Canny边缘检测算法首先使用Sobel算子计算图像的梯度强度和方向,然后通过非最大抑制和双阈值处理来提取出真正的边缘。使用cv2.Canny()函数可以方便地进行Canny边缘检测,你可以根据实际情况调整阈值参数。

  2. 轮廓提取:使用cv2.findContours()函数来提取边缘图像中的轮廓。轮廓是连续的曲线,可以用来表示物体的形状。通过设置适当的参数,可以选择性地提取出仪表盘的指针轮廓。

  3. 指针识别:对于仪表指针,通常可以通过以下特征进行识别:

    • 面积大小:指针通常具有相对较大的面积。
    • 形状:指针通常是细长的形状,可以通过检查轮廓的形状来判断是否为指针。
    • 位置:指针通常位于仪表盘中心附近。

    可以遍历提取到的轮廓,根据以上特征来筛选出指针轮廓。

  4. 读数计算:对于选定的指针轮廓,可以通过计算指针与仪表盘中心之间的夹角来得到仪表的读数。可以使用cv2.minEnclosingCircle()函数找到指针的中心点,然后计算指针中心点与仪表盘中心点之间的夹角。

结果展示

可以看出下图给出了角度值,通过圆盘的固定尺度的丈量,就可以自动化推理出,指数是多少。

在这里插入图片描述

代码与总结

要基于OpenCV对指针式仪表进行读数,可以采用以下步骤:

  • 读取图像:使用cv2.imread()函数读取图像文件,或从摄像头中实时获取图像。
  • 图像预处理:对图像进行预处理,以便提取出仪表盘的指针和刻度线等关键部分。例如,可以使用cv2.cvtColor()函数将图像转换为灰度图像,然后使用cv2.GaussianBlur()函数进行高斯模糊,以去除噪声。
  • 提取特征:使用OpenCV的特征提取算法,如Canny边缘检测、Hough变换等,找到仪表盘的指针和刻度线等关键部分。
  • 计算角度:通过计算指针与刻度线之间的夹角,即可得到仪表的读数。可以使用cv2.minEnclosingCircle()函数找到指针的中心点,然后计算指针中心点与仪表盘中心点之间的夹角。
  • 显示结果:将读数显示在图像上,并将图像显示出来或保存为文本
import cv2
import numpy as np# 读取图像
img = cv2.imread('meter.jpg')# 图像预处理
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)# 提取特征
edges = cv2.Canny(blur, 50, 200, apertureSize=3)
lines = cv2.HoughLines(edges, 1, np.pi/180, 100)# 找到指针和刻度线
for line in lines:rho, theta = line[0]if theta < np.pi/4 or theta > 3*np.pi/4:x0 = np.cos(theta) * rhoy0 = np.sin(theta) * rhopt1 = (int(x0 + 1000*(-np.sin(theta))), int(y0 + 1000*np.cos(theta)))pt2 = (int(x0 - 1000*(-np.sin(theta))), int(y0 - 1000*np.cos(theta)))cv2.line(img, pt1, pt2, (0, 0, 255), 3)# 计算角度
center = (img.shape[1]//2, img.shape[0]//2)

最后

#联系qq1309399183

这篇关于基于opencv的指针式仪表的识别与读数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/601004

相关文章

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

Verybot之OpenCV应用三:色标跟踪

下面的这个应用主要完成的是Verybot跟踪色标的功能,识别部分还是居于OpenCV编写,色标跟踪一般需要将图像的颜色模式进行转换,将RGB转换为HSV,因为对HSV格式下的图像进行识别时受光线的影响比较小,但是也有采用RGB模式来进行识别的情况,这种情况一般光线条件比较固定,背景跟识别物在颜色上很容易区分出来。         下面这个程序的流程大致是这样的:

Verybot之OpenCV应用二:霍夫变换查找圆

其实我是想通过这个程序来测试一下,OpenCV在Verybot上跑得怎么样,霍夫变换的原理就不多说了,下面是程序: #include "cv.h"#include "highgui.h"#include "stdio.h"int main(int argc, char** argv){cvNamedWindow("vedio",0);CvCapture* capture;i

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

Clion不识别C代码或者无法跳转C语言项目怎么办?

如果是中文会显示: 此时只需要右击项目,或者你的源代码目录,将这个项目或者源码目录标记为项目源和头文件即可。 英文如下: