水汽稳定度修正函数\Psi_q对潜热通量影响--模式验证工作

本文主要是介绍水汽稳定度修正函数\Psi_q对潜热通量影响--模式验证工作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我之前提出了一个水汽通量廓线关系,这项工作偏理论,如果对下面说的背景不了解的话可以看下

https://agupubs.onlinelibrary.wiley.com/share/YNSG74MV8B8BAAUMCHN3?target=10.1029/2022JD036708

那会没把提出的水汽稳定度修正函数加到CAS-ESM,当时对CAS-ESM模式还没这么熟悉,也想着师兄能帮我,但是师兄太忙了。现在我对模式已经比较熟悉啦,之前又把师兄加COARE的工作重复了一下,万事俱备只欠东风了。

试验设计:

为了探究温度稳定度修正函数psit和比湿稳定度修正函数对湍流潜热通量的模拟差异,我们采用CAS-ESM2.0全耦合模式,设置了两组实验,除了湍流通量方案中稳定度修正函数以外,两组实验的其他设置都是相同的。我们将采用Psit的COARE算法的CAS-ESM耦合模式作为控制实验(CTRL),我们将采用Psiq的COARE算法的CAS-ESM耦合模式定义为实验一(EXP1)。两组实验都是初始积分(startup)开始,为了防止非平衡初值或扰动的条件下模式调整到平衡态的过程对实验结果影响,我们的两组实验均积分10年,从1995年1月1日到2004年12月31日,并选取2000年到2004年的数据进行分析。

技术细节写在这里:

我已经编写了模式的运行脚本,我也将COARE算法放入到了CAS-ESM中,现在只要在module_coare_model.f90中增加我的psiq的计算子程序再调用就可以了。

 

 real function psiq_26(zet)
!% computes specific humidity  structure function (ma,2022)real(r8) :: zetreal(r8) :: dzet, psi, x, psik, psic, fdzet = min(50.,0.35*zet) !% stablepsiq_26 = -0.6*zetif(zet < 0.) then !% unstablex = (1.-15.*zet)**0.5psik = 2.*log((1.+x)/2.)x = (1.-34.15*zet)**0.3333psic = 1.5*log((1.+x+x*x)/3.) - sqrt(3.)*atan((1.+2.*x)/sqrt(3.)) + &4.*atan(1.)/sqrt(3.)f = zet*zet/(1.+zet*zet)psiq_26 = (1.-f)*psik + f*psicendifend function psiq_26

在稳定的时候调用我们的比湿稳定度修正函数,计算潜热通量。下面是我的调试用的脚本,每次只要./tiaoshi.sh就可以自动进行模式运行试验了。我把这次试验叫HIST_coare_psiq_ri。

#case试验名称
CASE_NAME='HIST_coare_psiq_ri' 
#试验开始年月日YYYYMMDD
start_ymd='20000101'
stop_option='nyears'
stop_n='1'#判断和删除残留文件夹if [ -d "/data/chengxl/CAS-ESM2.0-test1/scripts/${CASE_NAME}" ]; thenrm -r /data/chengxl/CAS-ESM2.0-test1/scripts/${CASE_NAME}
fiif [ -d "/data/chengxl/CAS-ESM2.0-test1/run/${CASE_NAME}" ]; thenrm -r /data/chengxl/CAS-ESM2.0-test1/run/${CASE_NAME}
fi#创建case试验和编译
cd /data/chengxl/CAS-ESM2.0-test1/scripts./create_newcase -case ${CASE_NAME} -compset HIST_C6_C -res fd14_licom -mach huan_defaultcd /data/chengxl/CAS-ESM2.0-test1/scripts/${CASE_NAME}./configure -case./${CASE_NAME}.huan_default.build#运行试验前的设置cd /data/chengxl/CAS-ESM2.0-test1/run/${CASE_NAME}/run #cp /data/chengxl/CAS-ESM2.0-test1/run_demo/atm_in . 
#cp /data/chengxl/CAS-ESM2.0-test1/run_demo/drv_in . #输出变量管理
sed -i "12 a\\nhtfrq=0,0" atm_in
sed -i "13 a\\fincl1 = 'lhf_tbf','tau_tbf' ,'shf_tbf','n2','pbl_h','h_wave','tau_coare','hsb_coare','hlb_coare', 'LHFLX', 'SHFLX','qsss'" atm_in
sed -i "14 a\\fincl2 = 'lhf_tbf','tau_tbf','shf_tbf','tau_coare','hsb_coare','hlb_coare','h_wave' ,'h_wave_ln','pbl_h','ustar','obklen','n2','LHFLX','SHFLX','ri'"  atm_in#运行时间控制
sed -i "1,$ s/continue/startup/g" drv_in
sed -i "1,$ s/start_ymd      =  00010101/start_ymd      =${start_ymd}/g" drv_in 
sed -i "1,$ s/ndays/${stop_option}/g" drv_in
sed -i "1,$ s/stop_n         = 5/stop_n         =${stop_n}/g" drv_in
sed -i "1,$ s/restart_n      = 5/restart_n      =${stop_n}/g" drv_incp /data/chengxl/CAS-ESM2.0-test1/run_demo/run.slurm .
sbatch run.slurm
sleep 2
squeue
sleep 2 

经过二十四小时左右的运行,模式结果全部都输出好了,没有错误。我们对模式的输出进行分析。

我将我的边界层模块的变量都放在了h1文件中。我们首先查看12月的都在。

(base) [chengxl@login01 run]$ ls B20TR_C35_y100.iap.h1.2000-*

B20TR_C35_y100.iap.h1.2000-01.nc B20TR_C35_y100.iap.h1.2000-05.nc B20TR_C35_y100.iap.h1.2000-09.nc

B20TR_C35_y100.iap.h1.2000-02.nc B20TR_C35_y100.iap.h1.2000-06.nc B20TR_C35_y100.iap.h1.2000-10.nc

B20TR_C35_y100.iap.h1.2000-03.nc B20TR_C35_y100.iap.h1.2000-07.nc B20TR_C35_y100.iap.h1.2000-11.nc

B20TR_C35_y100.iap.h1.2000-04.nc B20TR_C35_y100.iap.h1.2000-08.nc B20TR_C35_y100.iap.h1.2000-12.nc

 我们首先将其转化为一年平均的,因为是地球系统模式,所以分析年平均是有意义的,时间太短反而科学性有待考量。我们用一句语句来解决:

ls B20TR_C35_y100.iap.h1.2000-* | xargs -I{} cdo yearmean {} CASESM-COARE-psiq.2000ym.nc
 

cdo: /public/software/apps/anaconda3/5.3.0/lib/libuuid.so.1: no version information available (required by cdo).nc

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable date_written!

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable time_written!

cdo yearmean: Processed 2720139 values from 29 variables over 1 timestep [0.27s 50MB].

cdo: /public/software/apps/anaconda3/5.3.0/lib/libuuid.so.1: no version information available (required by cdo)

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable date_written!

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable time_written!

cdo yearmean: Processed 2720139 values from 29 variables over 1 timestep [0.31s 49MB].

cdo: /public/software/apps/anaconda3/5.3.0/lib/libuuid.so.1: no version information available (required by cdo)

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable date_written!

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable time_written!

cdo yearmean: Processed 2720139 values from 29 variables over 1 timestep [0.39s 49MB].

cdo: /public/software/apps/anaconda3/5.3.0/lib/libuuid.so.1: no version information available (required by cdo)

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable date_written!

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable time_written!

cdo yearmean: Processed 2720139 values from 29 variables over 1 timestep [0.31s 50MB].

cdo: /public/software/apps/anaconda3/5.3.0/lib/libuuid.so.1: no version information available (required by cdo)

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable date_written!

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable time_written!

cdo yearmean: Processed 2720139 values from 29 variables over 1 timestep [0.30s 49MB].

cdo: /public/software/apps/anaconda3/5.3.0/lib/libuuid.so.1: no version information available (required by cdo)

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable date_written!

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable time_written!

cdo yearmean: Processed 2720139 values from 29 variables over 1 timestep [0.44s 49MB].

cdo: /public/software/apps/anaconda3/5.3.0/lib/libuuid.so.1: no version information available (required by cdo)

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable date_written!

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable time_written!

cdo yearmean: Processed 2720139 values from 29 variables over 1 timestep [0.37s 49MB].

cdo: /public/software/apps/anaconda3/5.3.0/lib/libuuid.so.1: no version information available (required by cdo)

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable date_written!

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable time_written!

cdo yearmean: Processed 2720139 values from 29 variables over 1 timestep [0.19s 49MB].

cdo: /public/software/apps/anaconda3/5.3.0/lib/libuuid.so.1: no version information available (required by cdo)

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable date_written!

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable time_written!

cdo yearmean: Processed 2720139 values from 29 variables over 1 timestep [0.32s 49MB].

cdo: /public/software/apps/anaconda3/5.3.0/lib/libuuid.so.1: no version information available (required by cdo)

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable date_written!

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable time_written!

cdo yearmean: Processed 2720139 values from 29 variables over 1 timestep [0.49s 49MB].

cdo: /public/software/apps/anaconda3/5.3.0/lib/libuuid.so.1: no version information available (required by cdo)

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable date_written!

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable time_written!

cdo yearmean: Processed 2720139 values from 29 variables over 1 timestep [0.31s 50MB].

cdo: /public/software/apps/anaconda3/5.3.0/lib/libuuid.so.1: no version information available (required by cdo)

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable date_written!

Warning (cdfCheckVars): Unsupported data type (char/string), skipped variable time_written!

cdo yearmean: Processed 2720139 values from 29 variables over 1 timestep [0.23s 49MB].

 成功得到了我们想要的数据CASESM-COARE-psiq.2000ym.nc

因为我比较习惯于使用本地主机上的Python还有panoply来分析我的结果,所以我先用ftp把我的资料从超算上下载到本地。

我们用panoply来简单看一下潜热的计算结果。

先保存一下,hlb_coare_in_CASESM-COARE-psiq.2000ym.png

然后我们再看下如果是原先用psit计算出来的潜热通量

我们看到计算出来的结果是合理的。比原先的潜热模拟值要大,这也是我们预料之内的。因为稳定度参数随着稳定度的增加减少量是变小的,这样的话分母变小,系数是相对变大的。

哦对了,因为极地区域没有经过处理,所以也是偏大的。这一点还存在一点问题。下次修改代码的时候把极地的通量采用原先的计算结果。就是在海冰的时候不该使用COARE算法。

除了这个问题,其他没有问题了。我们开始用Python来进行一些简单的数据处理。就是和OAflux潜热,以及Psiq,Psit,之间的对比


ctrl_data = xr.open_dataset(r'H:\fluxdeepl\CAS_ESM_psi_test\CASESM-COARE-psit.2000ym.nc', engine='netcdf4')exp1_data = xr.open_dataset(r'H:\fluxdeepl\CAS_ESM_psi_test\CASESM-COARE-psiq.2000ym.nc', engine='netcdf4')oaflux_data = xr.open_dataset(r'H:\fluxdeepl\CAS_ESM2_flux_test\latent256X128.nc', engine='netcdf4')lhf_ctrl = ctrl_data.hlb_coare.data
lhf_ctrl = np.squeeze(lhf_ctrl, axis = 0)lhf_exp1 = exp1_data.hlb_coare.data
lhf_exp1 = np.squeeze(lhf_exp1, axis = 0)lhf_oa   = oaflux_data.lhtfl.data[192:204,:,:]
lhf_oa = np.nanmean(lhf_oa,axis = 0)exp1_oa = lhf_exp1 - lhf_oa
ctrl_oa = lhf_ctrl - lhf_oa 
exp1_ctrl = lhf_exp1 - lhf_ctrl
write_to_nc_1(lhf_oa,'oa.nc')
write_to_nc_1(lhf_exp1,'psiq.nc')
write_to_nc_1(lhf_ctrl,'psit.nc')
write_to_nc_1(exp1_oa,'psiq_oa.nc')
write_to_nc_1(ctrl_oa,'psit_oa.nc')
write_to_nc_1(exp1_ctrl,'psiq_psit.nc')

 然后我们就用panpoly来画图了,懒得用NCL或者python画了。

我们可以看见:

1.潜热通量对水汽稳定度修正函数响应较大。

2.热带海气边界层湍流潜热通量的模拟有所改进。

这篇关于水汽稳定度修正函数\Psi_q对潜热通量影响--模式验证工作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/600345

相关文章

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

C++ | Leetcode C++题解之第393题UTF-8编码验证

题目: 题解: class Solution {public:static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num &

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

工作常用指令与快捷键

Git提交代码 git fetch  git add .  git commit -m “desc”  git pull  git push Git查看当前分支 git symbolic-ref --short -q HEAD Git创建新的分支并切换 git checkout -b XXXXXXXXXXXXXX git push origin XXXXXXXXXXXXXX