Python 全栈体系【四阶】(十二)

2024-01-12 23:20

本文主要是介绍Python 全栈体系【四阶】(十二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第四章 机器学习

十五、朴素贝叶斯

朴素贝叶斯是一组功能强大且易于训练的分类器,它使用贝叶斯定理来确定给定一组条件的结果的概率,“朴素”的含义是指所给定的条件都能独立存在和发生。朴素贝叶斯是多用途分类器,能在很多不同的情景下找到它的应用,例如垃圾邮件过滤、自然语言处理等。

1. 概率

1.1 定义

概率是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如:

(1)抛一枚硬币,可能正面朝上,可能反面朝上,这是随机事件。正/反面朝上的可能性称为概率;

(2)掷骰子,掷出的点数为随机事件。每个点数出现的可能性称为概率;

(3)一批商品包含良品、次品,随机抽取一件,抽得良品/次品为随机事件。经过大量反复试验,抽得次品率越来越接近于某个常数,则该常数为概率。

我们可以将随机事件记为 A 或 B,则 P(A), P(B)表示事件 A 或 B 的概率。

1.2 联合概率与条件概率
1.2.1 联合概率

指包含多个条件且所有条件同时成立的概率,记作 P ( A , B ) P ( A , B ) P(A,B) ,或 P ( A B ) P(AB) P(AB),或 P ( A ⋂ B ) P(A \bigcap B) P(AB)

1.2.2 条件概率

已知事件 B 发生的条件下,另一个事件 A 发生的概率称为条件概率,记为: P ( A ∣ B ) P(A|B) P(AB) p(下雨|阴天)

1.2.3 事件的独立性

事件 A 不影响事件 B 的发生,称这两个事件独立,记为:

P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

因为 A 和 B 不相互影响,则有:

P ( A ∣ B ) = P ( A ) P(A|B) = P(A) P(AB)=P(A)

可以理解为,给定或不给定 B 的条件下,A 的概率都一样大。

1.3 先验概率与后验概率
1.3.1 先验概率

先验概率也是根据以往经验和分析得到的概率,例如:在没有任何信息前提的情况下,猜测对面来的陌生人姓氏,姓李的概率最大(因为全国李姓为占比最高的姓氏),这便是先验概率。

1.3.2 后验概率

后验概率是指在接收了一定条件或信息的情况下的修正概率,例如:在知道对面的人来自“牛家村”的情况下,猜测他姓牛的概率最大,但不排除姓杨、李等等,这便是后验概率。

1.3.3 两者的关系

事情还没有发生,求这件事情发生的可能性的大小,是先验概率(可以理解为由因求果)。事情已经发生,求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率(由果求因)。先验概率与后验概率有不可分割的联系,后验概率的计算要以先验概率为基础。

2. 贝叶斯定理

2.1 定义

贝叶斯定理由英国数学家托马斯.贝叶斯 (Thomas Bayes)提出,用来描述两个条件概率之间的关系,定理描述为:

P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B) = \frac{P(A)P(B|A)}{P(B)} P(AB)=P(B)P(A)P(BA)

其中, P ( A ) P(A) P(A) P ( B ) P(B) P(B)是 A 事件和 B 事件发生的概率。 P ( A ∣ B ) P(A|B) P(AB)称为条件概率,表示 B 事件发生条件下,A 事件发生的概率。推导过程:

P ( A , B ) = P ( B ) P ( A ∣ B ) P ( B , A ) = P ( A ) P ( B ∣ A ) P(A,B) =P(B)P(A|B)\\ P(B,A) =P(A)P(B|A) P(A,B)=P(B)P(AB)P(B,A)=P(A)P(BA)

其中 P ( A , B ) P(A,B) P(A,B)称为联合概率,指事件 B 发生的概率,乘以事件 A 在事件 B 发生的条件下发生的概率。因为 P ( A , B ) = P ( B , A ) P(A,B)=P(B,A) P(A,B)=P(B,A), 所以有:

P ( B ) P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P(B)P(A|B)=P(A)P(B|A) P(B)P(AB)=P(A)P(BA)

两边同时除以 P(B),则得到贝叶斯定理的表达式。其中, P ( A ) P(A) P(A)是先验概率, P ( A ∣ B ) P(A|B) P(AB)是已知 B 发生后 A 的条件概率,也被称作后验概率。

2.2 贝叶斯定理示例

【示例一】计算诈骗短信的概率

事件概率表达式
所有短信中,诈骗短信5%P(A)= 0.05
所有短信中,含有“中奖”两个字4%P(B)= 0.04
所有短信中,是诈骗短信,并且含有“中奖”两个字50%P(B|A) = 0.5

求:收到一条新信息,含有“中奖”两个字,是诈骗短信的概率?

P ( A ∣ B ) = P ( A ) P ( B ∣ A ) / P ( B ) = 0.05 ∗ 0.5 / 0.04 = 0.625 P(A|B) = P(A) P(B|A) / P(B) = 0.05 * 0.5 / 0.04 = 0.625 P(AB)=P(A)P(BA)/P(B)=0.050.5/0.04=0.625

【示例二】计算喝酒驾车的概率

事件概率表达式
所有客人中,驾车20%P(A)= 0.2
所有客人中,喝酒10%P(B)= 0.1
所有客人中,开车并且喝酒5%P(B|A)= 0.05

求:喝过酒仍然会开车的人的比例是多少?

P ( A ∣ B ) = P ( A ) P ( B ∣ A ) / P ( B ) = 0.2 ∗ 0.05 / 0.1 = 0.1 P(A|B) = P(A) P(B|A) / P(B) = 0.2 * 0.05 / 0.1 = 0.1 P(AB)=P(A)P(BA)/P(B)=0.20.05/0.1=0.1

【示例三】

假设一个学校中 60%的男生 和 40%的女生

女生穿裤子的人数和穿裙子的人数相等

所有的男生都穿裤子,一个人随机在远处眺望,看一个穿裤子的学生。

请问这个学生是女生的概率:

p(女) = 0.4

p(裤子|女) = 0.5

p(裤子) = 0.8

P(女|裤子) = 0.4 * 0.5 / 0.8 = 0.25

P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B) = \frac{P(A)P(B|A)}{P(B)} P(AB)=P(B)P(A)P(BA)

3. 朴素贝叶斯分类器

3.1 分类原理

朴素贝叶斯分类器就是根据贝叶斯公式计算结果进行分类的模型,“朴素”指事件之间相互独立无影响。例如:有如下数据集:

TextCategory
A great game(一个伟大的比赛)Sports(体育运动)
The election was over(选举结束)Not sports(不是体育运动)
Very clean match(没内幕的比赛)Sports(体育运动)
A clean but forgettable game(一场难以忘记的比赛)Sports(体育运动)
It was a close election(这是一场势均力敌的选举)Not sports(不是体育运动)

求:”A very close game“ 是体育运动的概率?数学上表示为 P(Sports | a very close game)​。根据贝叶斯定理,是运动的概率可以表示为:

P ( S p o r t s ∣ a v e r y c l o s e g a m e ) = P ( a v e r y c l o s e g a m e ∣ s p o r t s ) ∗ P ( s p o r t s ) P ( a v e r y c l o s e g a m e ) P(Sports | a \ very \ close \ game) = \frac{P(a \ very \ close \ game | sports) * P(sports)}{P(a \ very \ close \ game)} P(Sportsa very close game)=P(a very close game)P(a very close gamesports)P(sports)

不是运动概率可以表示为:

P ( N o t S p o r t s ∣ a v e r y c l o s e g a m e ) = P ( a v e r y c l o s e g a m e ∣ N o t s p o r t s ) ∗ P ( N o t s p o r t s ) P ( a v e r y c l o s e g a m e ) P(Not \ Sports | a \ very \ close \ game) = \frac{P(a \ very \ close \ game | Not \ sports) * P(Not \ sports)}{P(a \ very \ close \ game)} P(Not Sportsa very close game)=P(a very close game)P(a very close gameNot sports)P(Not sports)

概率更大者即为分类结果。由于分母相同,即比较分子谁更大即可。我们只需统计”A very close game“ 多少次出现在 Sports 类别中,就可以计算出上述两个概率。但是”A very close game“ 并没有出现在数据集中,所以这个概率为 0,要解决这个问题,就假设每个句子的单词出现都与其它单词无关(事件独立即朴素的含义),所以,P(a very close game)可以写成:

P ( a v e r y c l o s e g a m e ) = P ( a ) ∗ P ( v e r y ) ∗ P ( c l o s e ) ∗ P ( g a m e ) P(a \ very \ close \ game) = P(a) * P(very) * P(close) * P(game) P(a very close game)=P(a)P(very)P(close)P(game)

P ( a v e r y c l o s e g a m e ∣ S p o r t s ) = P ( a ∣ S p o r t s ) ∗ P ( v e r y ∣ S p o r t s ) ∗ P ( c l o s e ∣ S p o r t s ) ∗ P ( g a m e ∣ S p o r t s ) P(a \ very \ close \ game|Sports)= \\ P(a|Sports)*P(very|Sports)*P(close|Sports)*P(game|Sports) Pa very close gameSports)=P(aSports)P(verySports)P(closeSports)P(gameSports)

统计出“a", “very”, “close”, "game"出现在"Sports"类别中的概率,就能算出其所属的类别。

具体计算过程如下:

  • 第一步:计算总词频:Sports 类别词语总数 11,Not Sports 类别词语总数 9

  • 第二步:计算每个类别的先验概率

    # Sports和Not Sports概率
    P(Sports) = 3 / 5 = 0.6
    P(Not Sports) = 2 / 5 = 0.4# Sports条件下各个词语概率
    P(a | Sports) = (2 + 1) / (11 + 14) = 0.12
    P(very | Sports) = (1 + 1) / (11 + 14) = 0.08
    P(close | Sports) = (0 + 1) / (11 + 14) = 0.04
    P(game | Sports) = (2 + 1) / (11 + 14) = 0.12# Not Sports条件下各个词语概率
    P(a | Not Sports) = (1 + 1) / (9 + 14) = 0.087
    P(very | Not Sports) = (0 + 1) / (9 + 14) = 0.043
    P(close | Not Sports) = (1 + 1) / (9 + 14) =  = 0.087
    P(game | Not Sports) = (0 + 1) / (9 + 14) = 0.043
    

    其中,分子部分加 1,是为了避免分子为 0 的情况;分母部分都加了词语总数 14,是为了避免分子增大的情况下计算结果超过 1 的可能。

  • 第三步:将先验概率带入贝叶斯定理,计算概率:

    • 是体育运动的概率:

      P ( a v e r y c l o s e g a m e ∣ S p o r t s ) = P ( a ∣ S p o r t s ) ∗ P ( v e r y ∣ S p o r t s ) ∗ P ( c l o s e ∣ S p o r t s ) ∗ P ( g a m e ∣ S p o r t s ) = 0.12 ∗ 0.08 ∗ 0.04 ∗ 0.12 = 0.00004608 P(a \ very \ close \ game|Sports)= \\ P(a|Sports)*P(very|Sports)*P(close|Sports)*P(game|Sports)= \\ 0.12 * 0.08 * 0.04 * 0.12 = 0.00004608 Pa very close gameSports)=P(aSports)P(verySports)P(closeSports)P(gameSports)=0.120.080.040.12=0.00004608

      • 不是体育运动的概率:

    P ( a v e r y c l o s e g a m e ∣ N o t S p o r t s ) = P ( a ∣ N o t S p o r t s ) ∗ P ( v e r y ∣ N o t S p o r t s ) ∗ P ( c l o s e ∣ N o t S p o r t s ) ∗ P ( g a m e ∣ N o t S p o r t s ) = 0.087 ∗ 0.043 ∗ 0.087 ∗ 0.043 = 0.000013996 P(a \ very \ close \ game|Not \ Sports)= \\ P(a|Not \ Sports)*P(very|Not \ Sports)*P(close|Not \ Sports)*P(game|Not \ Sports)= \\ 0.087 * 0.043 * 0.087 * 0.043 = 0.000013996 Pa very close gameNot Sports)=P(aNot Sports)P(veryNot Sports)P(closeNot Sports)P(gameNot Sports)=0.0870.0430.0870.043=0.000013996

    • 分类结果:P(Sports) = 0.00004608 , P(Not Sports) = 0.000013996, 是体育运动。
3.2 实现朴素贝叶斯分类器

在 sklearn 中,提供了三个朴素贝叶斯分类器,分别是:

  • GaussianNB(高斯朴素贝叶斯分类器):适合用于样本的值是连续的,数据呈正态分布的情况(比如人的身高、城市家庭收入、一次考试的成绩等等)
  • MultinominalNB(多项式朴素贝叶斯分类器):适合用于大部分属性为离散值的数据集
  • BernoulliNB(伯努利朴素贝叶斯分类器):适合用于特征值为二元离散值或是稀疏的多元离散值的数据集

该示例中,样本的值为连续值,且呈正态分布,所以采用 GaussianNB 模型。代码如下:

# 朴素贝叶斯分类示例
import numpy as np
import sklearn.naive_bayes as nb
import matplotlib.pyplot as mp# 输入,输出
x, y = [], []# 读取数据文件
with open("../data/multiple1.txt", "r") as f:for line in f.readlines():data = [float(substr) for substr in line.split(",")]x.append(data[:-1])  # 输入样本:取从第一列到倒数第二列y.append(data[-1])  # 输出样本:取最后一列x = np.array(x)
y = np.array(y, dtype=int)# 创建高斯朴素贝叶斯分类器对象
model = nb.GaussianNB()
model.fit(x, y)  # 训练# 计算显示范围
left = x[:, 0].min() - 1
right = x[:, 0].max() + 1buttom = x[:, 1].min() - 1
top = x[:, 1].max() + 1grid_x, grid_y = np.meshgrid(np.arange(left, right, 0.01),np.arange(buttom, top, 0.01))mesh_x = np.column_stack((grid_x.ravel(), grid_y.ravel()))
mesh_z = model.predict(mesh_x)
mesh_z = mesh_z.reshape(grid_x.shape)mp.figure('Naive Bayes Classification', facecolor='lightgray')
mp.title('Naive Bayes Classification', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.pcolormesh(grid_x, grid_y, mesh_z, cmap='gray')
mp.scatter(x[:, 0], x[:, 1], c=y, cmap='brg', s=80)
mp.show()

执行结果:

在这里插入图片描述

4. 总结

4.1 什么是朴素贝叶斯

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。“朴素”的含义为:假设问题的特征变量都是相互独立地作用于决策变量的,即问题的特征之间都是互不相关的。

4.2 朴素贝叶斯分类的特点
4.2.1 优点
  • 逻辑性简单
  • 算法较为稳定。当数据呈现不同的特点时,朴素贝叶斯的分类性能不会有太大的差异。
  • 当样本特征之间的关系相对比较独立时,朴素贝叶斯分类算法会有较好的效果。
4.2.2 缺点
  • 特征的独立性在很多情况下是很难满足的,因为样本特征之间往往都存在着相互关联,如果在分类过程中出现这种问题,会导致分类的效果大大降低。
4.3 什么情况下使用朴素贝叶斯

根据先验概率计算后验概率的情况,且样本特征之间独立性较强。

这篇关于Python 全栈体系【四阶】(十二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/599481

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操