Python 全栈体系【四阶】(十二)

2024-01-12 23:20

本文主要是介绍Python 全栈体系【四阶】(十二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第四章 机器学习

十五、朴素贝叶斯

朴素贝叶斯是一组功能强大且易于训练的分类器,它使用贝叶斯定理来确定给定一组条件的结果的概率,“朴素”的含义是指所给定的条件都能独立存在和发生。朴素贝叶斯是多用途分类器,能在很多不同的情景下找到它的应用,例如垃圾邮件过滤、自然语言处理等。

1. 概率

1.1 定义

概率是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如:

(1)抛一枚硬币,可能正面朝上,可能反面朝上,这是随机事件。正/反面朝上的可能性称为概率;

(2)掷骰子,掷出的点数为随机事件。每个点数出现的可能性称为概率;

(3)一批商品包含良品、次品,随机抽取一件,抽得良品/次品为随机事件。经过大量反复试验,抽得次品率越来越接近于某个常数,则该常数为概率。

我们可以将随机事件记为 A 或 B,则 P(A), P(B)表示事件 A 或 B 的概率。

1.2 联合概率与条件概率
1.2.1 联合概率

指包含多个条件且所有条件同时成立的概率,记作 P ( A , B ) P ( A , B ) P(A,B) ,或 P ( A B ) P(AB) P(AB),或 P ( A ⋂ B ) P(A \bigcap B) P(AB)

1.2.2 条件概率

已知事件 B 发生的条件下,另一个事件 A 发生的概率称为条件概率,记为: P ( A ∣ B ) P(A|B) P(AB) p(下雨|阴天)

1.2.3 事件的独立性

事件 A 不影响事件 B 的发生,称这两个事件独立,记为:

P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

因为 A 和 B 不相互影响,则有:

P ( A ∣ B ) = P ( A ) P(A|B) = P(A) P(AB)=P(A)

可以理解为,给定或不给定 B 的条件下,A 的概率都一样大。

1.3 先验概率与后验概率
1.3.1 先验概率

先验概率也是根据以往经验和分析得到的概率,例如:在没有任何信息前提的情况下,猜测对面来的陌生人姓氏,姓李的概率最大(因为全国李姓为占比最高的姓氏),这便是先验概率。

1.3.2 后验概率

后验概率是指在接收了一定条件或信息的情况下的修正概率,例如:在知道对面的人来自“牛家村”的情况下,猜测他姓牛的概率最大,但不排除姓杨、李等等,这便是后验概率。

1.3.3 两者的关系

事情还没有发生,求这件事情发生的可能性的大小,是先验概率(可以理解为由因求果)。事情已经发生,求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率(由果求因)。先验概率与后验概率有不可分割的联系,后验概率的计算要以先验概率为基础。

2. 贝叶斯定理

2.1 定义

贝叶斯定理由英国数学家托马斯.贝叶斯 (Thomas Bayes)提出,用来描述两个条件概率之间的关系,定理描述为:

P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B) = \frac{P(A)P(B|A)}{P(B)} P(AB)=P(B)P(A)P(BA)

其中, P ( A ) P(A) P(A) P ( B ) P(B) P(B)是 A 事件和 B 事件发生的概率。 P ( A ∣ B ) P(A|B) P(AB)称为条件概率,表示 B 事件发生条件下,A 事件发生的概率。推导过程:

P ( A , B ) = P ( B ) P ( A ∣ B ) P ( B , A ) = P ( A ) P ( B ∣ A ) P(A,B) =P(B)P(A|B)\\ P(B,A) =P(A)P(B|A) P(A,B)=P(B)P(AB)P(B,A)=P(A)P(BA)

其中 P ( A , B ) P(A,B) P(A,B)称为联合概率,指事件 B 发生的概率,乘以事件 A 在事件 B 发生的条件下发生的概率。因为 P ( A , B ) = P ( B , A ) P(A,B)=P(B,A) P(A,B)=P(B,A), 所以有:

P ( B ) P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P(B)P(A|B)=P(A)P(B|A) P(B)P(AB)=P(A)P(BA)

两边同时除以 P(B),则得到贝叶斯定理的表达式。其中, P ( A ) P(A) P(A)是先验概率, P ( A ∣ B ) P(A|B) P(AB)是已知 B 发生后 A 的条件概率,也被称作后验概率。

2.2 贝叶斯定理示例

【示例一】计算诈骗短信的概率

事件概率表达式
所有短信中,诈骗短信5%P(A)= 0.05
所有短信中,含有“中奖”两个字4%P(B)= 0.04
所有短信中,是诈骗短信,并且含有“中奖”两个字50%P(B|A) = 0.5

求:收到一条新信息,含有“中奖”两个字,是诈骗短信的概率?

P ( A ∣ B ) = P ( A ) P ( B ∣ A ) / P ( B ) = 0.05 ∗ 0.5 / 0.04 = 0.625 P(A|B) = P(A) P(B|A) / P(B) = 0.05 * 0.5 / 0.04 = 0.625 P(AB)=P(A)P(BA)/P(B)=0.050.5/0.04=0.625

【示例二】计算喝酒驾车的概率

事件概率表达式
所有客人中,驾车20%P(A)= 0.2
所有客人中,喝酒10%P(B)= 0.1
所有客人中,开车并且喝酒5%P(B|A)= 0.05

求:喝过酒仍然会开车的人的比例是多少?

P ( A ∣ B ) = P ( A ) P ( B ∣ A ) / P ( B ) = 0.2 ∗ 0.05 / 0.1 = 0.1 P(A|B) = P(A) P(B|A) / P(B) = 0.2 * 0.05 / 0.1 = 0.1 P(AB)=P(A)P(BA)/P(B)=0.20.05/0.1=0.1

【示例三】

假设一个学校中 60%的男生 和 40%的女生

女生穿裤子的人数和穿裙子的人数相等

所有的男生都穿裤子,一个人随机在远处眺望,看一个穿裤子的学生。

请问这个学生是女生的概率:

p(女) = 0.4

p(裤子|女) = 0.5

p(裤子) = 0.8

P(女|裤子) = 0.4 * 0.5 / 0.8 = 0.25

P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B) = \frac{P(A)P(B|A)}{P(B)} P(AB)=P(B)P(A)P(BA)

3. 朴素贝叶斯分类器

3.1 分类原理

朴素贝叶斯分类器就是根据贝叶斯公式计算结果进行分类的模型,“朴素”指事件之间相互独立无影响。例如:有如下数据集:

TextCategory
A great game(一个伟大的比赛)Sports(体育运动)
The election was over(选举结束)Not sports(不是体育运动)
Very clean match(没内幕的比赛)Sports(体育运动)
A clean but forgettable game(一场难以忘记的比赛)Sports(体育运动)
It was a close election(这是一场势均力敌的选举)Not sports(不是体育运动)

求:”A very close game“ 是体育运动的概率?数学上表示为 P(Sports | a very close game)​。根据贝叶斯定理,是运动的概率可以表示为:

P ( S p o r t s ∣ a v e r y c l o s e g a m e ) = P ( a v e r y c l o s e g a m e ∣ s p o r t s ) ∗ P ( s p o r t s ) P ( a v e r y c l o s e g a m e ) P(Sports | a \ very \ close \ game) = \frac{P(a \ very \ close \ game | sports) * P(sports)}{P(a \ very \ close \ game)} P(Sportsa very close game)=P(a very close game)P(a very close gamesports)P(sports)

不是运动概率可以表示为:

P ( N o t S p o r t s ∣ a v e r y c l o s e g a m e ) = P ( a v e r y c l o s e g a m e ∣ N o t s p o r t s ) ∗ P ( N o t s p o r t s ) P ( a v e r y c l o s e g a m e ) P(Not \ Sports | a \ very \ close \ game) = \frac{P(a \ very \ close \ game | Not \ sports) * P(Not \ sports)}{P(a \ very \ close \ game)} P(Not Sportsa very close game)=P(a very close game)P(a very close gameNot sports)P(Not sports)

概率更大者即为分类结果。由于分母相同,即比较分子谁更大即可。我们只需统计”A very close game“ 多少次出现在 Sports 类别中,就可以计算出上述两个概率。但是”A very close game“ 并没有出现在数据集中,所以这个概率为 0,要解决这个问题,就假设每个句子的单词出现都与其它单词无关(事件独立即朴素的含义),所以,P(a very close game)可以写成:

P ( a v e r y c l o s e g a m e ) = P ( a ) ∗ P ( v e r y ) ∗ P ( c l o s e ) ∗ P ( g a m e ) P(a \ very \ close \ game) = P(a) * P(very) * P(close) * P(game) P(a very close game)=P(a)P(very)P(close)P(game)

P ( a v e r y c l o s e g a m e ∣ S p o r t s ) = P ( a ∣ S p o r t s ) ∗ P ( v e r y ∣ S p o r t s ) ∗ P ( c l o s e ∣ S p o r t s ) ∗ P ( g a m e ∣ S p o r t s ) P(a \ very \ close \ game|Sports)= \\ P(a|Sports)*P(very|Sports)*P(close|Sports)*P(game|Sports) Pa very close gameSports)=P(aSports)P(verySports)P(closeSports)P(gameSports)

统计出“a", “very”, “close”, "game"出现在"Sports"类别中的概率,就能算出其所属的类别。

具体计算过程如下:

  • 第一步:计算总词频:Sports 类别词语总数 11,Not Sports 类别词语总数 9

  • 第二步:计算每个类别的先验概率

    # Sports和Not Sports概率
    P(Sports) = 3 / 5 = 0.6
    P(Not Sports) = 2 / 5 = 0.4# Sports条件下各个词语概率
    P(a | Sports) = (2 + 1) / (11 + 14) = 0.12
    P(very | Sports) = (1 + 1) / (11 + 14) = 0.08
    P(close | Sports) = (0 + 1) / (11 + 14) = 0.04
    P(game | Sports) = (2 + 1) / (11 + 14) = 0.12# Not Sports条件下各个词语概率
    P(a | Not Sports) = (1 + 1) / (9 + 14) = 0.087
    P(very | Not Sports) = (0 + 1) / (9 + 14) = 0.043
    P(close | Not Sports) = (1 + 1) / (9 + 14) =  = 0.087
    P(game | Not Sports) = (0 + 1) / (9 + 14) = 0.043
    

    其中,分子部分加 1,是为了避免分子为 0 的情况;分母部分都加了词语总数 14,是为了避免分子增大的情况下计算结果超过 1 的可能。

  • 第三步:将先验概率带入贝叶斯定理,计算概率:

    • 是体育运动的概率:

      P ( a v e r y c l o s e g a m e ∣ S p o r t s ) = P ( a ∣ S p o r t s ) ∗ P ( v e r y ∣ S p o r t s ) ∗ P ( c l o s e ∣ S p o r t s ) ∗ P ( g a m e ∣ S p o r t s ) = 0.12 ∗ 0.08 ∗ 0.04 ∗ 0.12 = 0.00004608 P(a \ very \ close \ game|Sports)= \\ P(a|Sports)*P(very|Sports)*P(close|Sports)*P(game|Sports)= \\ 0.12 * 0.08 * 0.04 * 0.12 = 0.00004608 Pa very close gameSports)=P(aSports)P(verySports)P(closeSports)P(gameSports)=0.120.080.040.12=0.00004608

      • 不是体育运动的概率:

    P ( a v e r y c l o s e g a m e ∣ N o t S p o r t s ) = P ( a ∣ N o t S p o r t s ) ∗ P ( v e r y ∣ N o t S p o r t s ) ∗ P ( c l o s e ∣ N o t S p o r t s ) ∗ P ( g a m e ∣ N o t S p o r t s ) = 0.087 ∗ 0.043 ∗ 0.087 ∗ 0.043 = 0.000013996 P(a \ very \ close \ game|Not \ Sports)= \\ P(a|Not \ Sports)*P(very|Not \ Sports)*P(close|Not \ Sports)*P(game|Not \ Sports)= \\ 0.087 * 0.043 * 0.087 * 0.043 = 0.000013996 Pa very close gameNot Sports)=P(aNot Sports)P(veryNot Sports)P(closeNot Sports)P(gameNot Sports)=0.0870.0430.0870.043=0.000013996

    • 分类结果:P(Sports) = 0.00004608 , P(Not Sports) = 0.000013996, 是体育运动。
3.2 实现朴素贝叶斯分类器

在 sklearn 中,提供了三个朴素贝叶斯分类器,分别是:

  • GaussianNB(高斯朴素贝叶斯分类器):适合用于样本的值是连续的,数据呈正态分布的情况(比如人的身高、城市家庭收入、一次考试的成绩等等)
  • MultinominalNB(多项式朴素贝叶斯分类器):适合用于大部分属性为离散值的数据集
  • BernoulliNB(伯努利朴素贝叶斯分类器):适合用于特征值为二元离散值或是稀疏的多元离散值的数据集

该示例中,样本的值为连续值,且呈正态分布,所以采用 GaussianNB 模型。代码如下:

# 朴素贝叶斯分类示例
import numpy as np
import sklearn.naive_bayes as nb
import matplotlib.pyplot as mp# 输入,输出
x, y = [], []# 读取数据文件
with open("../data/multiple1.txt", "r") as f:for line in f.readlines():data = [float(substr) for substr in line.split(",")]x.append(data[:-1])  # 输入样本:取从第一列到倒数第二列y.append(data[-1])  # 输出样本:取最后一列x = np.array(x)
y = np.array(y, dtype=int)# 创建高斯朴素贝叶斯分类器对象
model = nb.GaussianNB()
model.fit(x, y)  # 训练# 计算显示范围
left = x[:, 0].min() - 1
right = x[:, 0].max() + 1buttom = x[:, 1].min() - 1
top = x[:, 1].max() + 1grid_x, grid_y = np.meshgrid(np.arange(left, right, 0.01),np.arange(buttom, top, 0.01))mesh_x = np.column_stack((grid_x.ravel(), grid_y.ravel()))
mesh_z = model.predict(mesh_x)
mesh_z = mesh_z.reshape(grid_x.shape)mp.figure('Naive Bayes Classification', facecolor='lightgray')
mp.title('Naive Bayes Classification', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.pcolormesh(grid_x, grid_y, mesh_z, cmap='gray')
mp.scatter(x[:, 0], x[:, 1], c=y, cmap='brg', s=80)
mp.show()

执行结果:

在这里插入图片描述

4. 总结

4.1 什么是朴素贝叶斯

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。“朴素”的含义为:假设问题的特征变量都是相互独立地作用于决策变量的,即问题的特征之间都是互不相关的。

4.2 朴素贝叶斯分类的特点
4.2.1 优点
  • 逻辑性简单
  • 算法较为稳定。当数据呈现不同的特点时,朴素贝叶斯的分类性能不会有太大的差异。
  • 当样本特征之间的关系相对比较独立时,朴素贝叶斯分类算法会有较好的效果。
4.2.2 缺点
  • 特征的独立性在很多情况下是很难满足的,因为样本特征之间往往都存在着相互关联,如果在分类过程中出现这种问题,会导致分类的效果大大降低。
4.3 什么情况下使用朴素贝叶斯

根据先验概率计算后验概率的情况,且样本特征之间独立性较强。

这篇关于Python 全栈体系【四阶】(十二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/599481

相关文章

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown